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Abstract We compare the output of various climate models to temperature and precipitation observations at 55
points around the globe. We also spatially aggregate model output and observations over the contiguous USA using
data from 70 stations, and we perform comparison at several temporal scales, including a climatic (30-year) scale.
Besides confirming the findings of a previous assessment study that model projections at point scale are poor, results
show that the spatially integrated projections are also poor.
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Comparaison de sorties locales et agrégées de modèles climatiques avec des données observées
Résumé Nous comparons les résultats de plusieurs modèles climatiques avec les observations de température et de
précipitation en 55 points du globe. De plus, nous agrégeons spatialement les sorties de modèles et les observations
couvrant les Etats-Unis d’Amérique à partir des données de 70 stations, et nous procédons à une comparaison à
plusieurs échelles temporelles, y compris à l’échelle climatique (30 ans). Les résultats sont non seulement cohérents
avec ceux d’une évaluation antérieure pour conclure que les projections par modélisation à l’échelle ponctuelle sont
pauvres, mais montrent aussi que les projections intégrées dans l’espace sont également pauvres.

Mots clefs modèles climatiques; modèles de circulation générale; changement climatique; climat de Hurst-Kolmogorov

INTRODUCTION

According to the Intergovernmental Panel on Climate
Change (IPCC), global circulation models (GCM) are
able to “reproduce features of the past climates and
climate changes” (Randall et al., 2007, p. 601). Here
we test whether this is indeed the case. We examine how
well several model outputs fit measured temperature and
rainfall in many stations around the globe. We also
integrate measurements and model outputs over a large
part of a continent, the contiguous USA (the USA
excluding islands and Alaska), and examine the extent
to which models can reproduce the past climate there.
We will be referring to this as “comparison at a large
scale”.

This paper is a continuation and expansion of
Koutsoyiannis et al. (2008). The differences are that
(a) Koutsoyiannis et al. (2008) had tested only eight
points, whereas here we test 55 points for each

variable; (b) we examine more variables in addition to
mean temperature and precipitation; and (c) we compare
at a large scale in addition to point scale. The comparison
methodology is presented in the next section.

While the study of Koutsoyiannis et al. (2008)
was not challenged by any formal discussion papers,
or any other peer-reviewed papers, criticism appeared
in science blogs (e.g. Schmidt, 2008). Similar criticism
has been received by two reviewers of the first draft of
this paper, hereinafter referred to as critics. In both
cases, it was only our methodology that was
challenged and not our results. Therefore, after pre-
senting the methodology below, we include a section
“Justification of the methodology”, in which we
discuss all the critical comments, and explain why
we disagree and why we think that our methodology
is appropriate. Following that, we present the results
and offer some concluding remarks.
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METHODOLOGYAND DATA

Comparison at point basis

For the first part, that is, for comparison at point basis,
we employed the same methodology as Koutsoyiannis
et al. (2008). We compared at 55 points worldwide,
selecting them with the following criteria: (a) distribu-
tion in all continents and in different types of climate;
(b) availability of data on the Internet at a monthly
time scale; and (c) existence of long data series
(>100 years) without, or with very few, missing data.
In total we used 84 stations, of which 29 for tempera-
ture, 29 for precipitation, and 26 for both. The stations
are shown in Fig. 1 and are listed by Anagnostopoulos
(2009, pp. 8–10). The data were downloaded from the

web site of the Royal Netherlands Meteorological
Institute (http://climexp.knmi.nl).

The next step was to retrieve a number of climatic
model outputs for historical periods. We picked exactly
the same outputs as Koutsoyiannis et al. (2008). The
models used are shown in Table 1, which is reproduced
from Koutsoyiannis et al. (2008). For TAR models, we
used the runs for scenario SRES A2, except for
ECHAM, for which we used IS92a. Since these runs
are based on historical GCM input information prior to
1989, and extended using scenarios for 1990 and
beyond, the choice of scenario is actually irrelevant
for test periods up to 1989, whereas for later periods
there is no significant difference between different
scenarios for the same model. For AR4 models we

(b)

(a)

Fig. 1 Stations selected for (a) temperature and (b) precipitation.
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used the runs for scenario 20C3M, which is the only
AR4 scenario relevant to this study, as the other scenar-
ios either concern the future (SRES, COMMIT) or are
not supposed to represent historical reality (1%-2X,
1%-4X, PI-cntrl). More details on the choice of scenar-
ios can be found in Koutsoyiannis et al. (2008).

To compare model outputs to historical time series,
we used the best linear unbiased estimation (BLUE)
technique in order to fit each historical time series to a
linear combination of the GCM outputs at the four
nearest grid points. Specifically, we optimize the weight
coefficients λ1, λ2, λ3, λ4 (assuming positive values for
physical consistency and λ1 + λ2 + λ3 + λ4 ¼ 1) in a
linear relationship x̃¼ λ1x1+ λ2x2+ λ3x3+ λ4x4, where x̃
is the best linear estimate of the historical value x
(i.e. x̃ – x is the estimation error), and x1, x2, x3, x4 are
the model outputs for the four nearest grid points.
Optimization is done on the basis of the coefficient of
efficiency, defined as Eff ¼ 1 – e2/σ2, where e2 is the
mean square error in estimation and σ2 is the variance of
the historical series. The methodology is the same as in
Koutsoyiannis et al. (2008), but here we examine more
time series for each station; specifically, for temperature
we examine: (a) annual average, (b) minimum monthly,
(c) maximum monthly, (d) annual amplitude,
(e) seasonal DJF (December-January-February), and
(f) seasonal JJA (June-July-August); for precipitation,
we examine: (a) total annual, (b) minimum monthly,
(c) maximum monthly, (d) seasonal DJF, and (e) seaso-
nal JJA. The comparison is made at three different time
scales: monthly, annual and climatic (30-year moving
average).

We used two main statistical indices (as in
Koutsoyiannis et al., 2008): the correlation coefficient
(between x ̃ and x) and the coefficient of efficiency.
Several other statistical parameters were examined,
depending on time scale. The average and the standard

deviation were examined at all scales. At the annual
time scale, the first-order autocorrelation coefficient
and the Hurst coefficient were examined. The latter is a
well-recognized metric of long-term fluctuations
(also known as Hurst-Kolmogorov behaviour; cf.
Kolmogorov, 1940; Hurst, 1951; Koutsoyiannis,
2010). The Hurst coefficient has a value of 0.50 for
time-independent processes and 1.0 for fully depen-
dent ones (Koutsoyiannis, 2003). Finally, at the cli-
matic scale, the following metrics were additionally
examined: (a) the change of 30-year moving average
temperature or precipitation in the 20th century; (b) the
change between the first and last values of each cli-
matic time series; and (c) the maximum climatic fluc-
tuation across the entire period. We calculate the
change in moving average as the difference of
30-year moving averages centred at 1985 and 1915
(the 20th century is the common simulation period for
all models except HadCM3 on scenario SRES A2);
and we define the maximum fluctuation as the differ-
ence of maximum minus minimum observed or simu-
lated climatic values, where a positive sign indicates
that the minimum value precedes (in time) the max-
imum (positive trend), and a negative sign indicates
the opposite.

Comparison at a large scale

We collected long time series of temperature and pre-
cipitation for 70 stations in the USA (five were also used
in the comparison at the point basis). Again the datawere
downloaded from the web site of the Royal Netherlands
Meteorological Institute (http://climexp.knmi.nl). The
stations were selected so that they are geographically
distributed throughout the contiguous USA. We
selected this region because of the good coverage
of data series satisfying the criteria discussed above.

Table 1 Models used in the study (reproduced from Koutsoyiannis et al., 2008).

IPCC
report

Name Developed by Resolution (o) in latitude
and longitude

Grid points, latitude
� longitude

TAR ECHAM4/OPYC3 Max-Planck-Institute for Meteorology & Deutsches
Klimarechenzentrum, Hamburg, Germany

2.8 � 2.8 64 � 128

TAR CGCM2 Canadian Centre for Climate Modeling and Analysis 3.7 � 3.7 48 � 96
TAR HADCM3 Hadley Centre for Climate Prediction and Research 2.5 � 3.7 73 � 96
AR4 CGCM3-T47 Canadian Centre for Climate (as above) 3.7 � 3.7 48 � 96
AR4 ECHAM5-OM Max-Planck-Institute (as above) 1.9 � 1.9 96 � 192
AR4 PCM National Centre for Atmospheric Research, USA 2.8 � 2.8 64 � 128

Sources: cera-http://www.dkrz.de/IPCC_DDC/IS92a/Max-Planck-Institut/echam4opyc3.html; Flato & Boer, 2001; Gordon et al., 2000;
www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html.
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The stations selected are shown in Fig. 2 and are
listed by Anagnostopoulos (2009, pp. 12–13).

In order to produce an areal time series we used the
method of Thiessen polygons (also known as Voronoi
cells), which assigns weights to each point measurement
that are proportional to the area of influence; the weights
are the “Thiessen coefficients”. The Thiessen polygons
for the selected stations of the USA are shown in Fig. 2.

The annual average temperature of the contiguous
USA was initially computed as the weighted average
of the mean annual temperature at each station, using
the station’s Thiessen coefficient as weight. The
weighted average elevation of the stations (computed
by multiplying the elevation of each station with the
Thiessen coefficient) isHm¼ 668.7 m and the average
elevation of the contiguous USA (computed as the
weighted average of the elevation of each state, using
the area of each state as weight) is H ¼ 746.8 m. By
plotting the average temperature of each station
against elevation and fitting a straight line, we deter-
mined a temperature gradient θ ¼ -0.0038�C/m,
which implies a correction of the annual average
areal temperature θ(H - Hm) ¼ -0.3�C.

The annual average precipitation of the contigu-
ous USAwas calculated simply as the weighted sum of
the total annual precipitation at each station, using the
station’s Thiessen coefficient as weight, without any
other correction, since no significant correlation could
be determined between elevation and precipitation for
the specific time series examined.

We verified the resulting areal time series using data
from other organizations. Two organizations provide
areal data for the USA: the National Oceanic and
Atmospheric Administration (NOAA) and the National

Aeronautics and Space Administration (NASA). Both
organizations havemodified the original data bymaking
several adjustments and using homogenizationmethods.
The time series of the two organizations have noticeable
differences, probably because they used different proces-
sing methods. The reason for calculating our own areal
time series is that we wanted to avoid any comparisons
with modified data. As shown in Fig. 3, the temperature
time series we calculated with the method described
above are almost identical to the time series of NOAA,
whereas in precipitation there is an almost constant
difference of 40 mm per year.

Determining the areal time series from the climate
model outputs is straightforward: we simply computed
a weighted average of the time series of the grid points
situated within the geographical boundaries of the
contiguous USA. The influence area of each grid
point is a rectangle whose “vertical” (perpendicular
to the equator) side is (φ2 - φ1)/2 and its “horizontal”
side is proportional to cosφ, where φ is the latitude of
each grid point, and φ2 and φ1 are the latitudes of the
adjacent “horizontal” grid lines. The weights used
were thus cosφ(φ2 - φ1); where grid latitudes are
evenly spaced, the weights are simply cosφ.

JUSTIFICATION OF THE METHODOLOGY

Scale of comparison

The study of Koutsoyiannis et al. (2008) has been
criticized (see Introduction) on the grounds that the
comparison at point scale is meaningless. The critics
also pointed out that the natural variability makes
evaluations meaningless if year-to-year values are

Fig. 2 Stations selected for areal integration and their contribution areas (Thiessen polygons).
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compared, especially since model runs are not initia-
lized with real initial conditions. Both objections are
essentially the same, and are related to scale, spatial
and temporal.

We think that the criticism about temporal scale is
evidently unjustified because one of our comparison
time scales is the climatic, 30-year, scale. In order to
address the objection concerning the spatial scale, we
will first attempt to clear up some confusion in the
literature. Von Storch et al. (1993) introduced the
notion of the “skillful scale” of the GCM and men-
tioned that the skillful scale is “likely” at least eight
grid point distances, but we cannot see in what way
this conclusion can be inferred from Grotch &
MacCracken (1991), which they cited. Today the
notion of skillful scale is not being used any more,
and, instead, Randall et al. (2007, p. 600) claim that
“there is considerable confidence that climate models
provide credible quantitative estimates of future cli-
mate change, particularly at continental scales and
above.” Despite being vague in several points
(e.g. “considerable”, “credible”, “continental scales”),
the statement seems to imply that GCMs are not very
skillful at a single grid cell scale. However,
Christensen et al. (2007, p. 852) mention that “provid-
ing information at finer scales [than the GCM compu-
tational grid] can be achieved through using high
resolution in dynamical models or empirical statistical
downscaling”, and imply that GCMs are skillful even
at single grid cells, as is also assumed by most litera-
ture on downscaling (e.g. Kotroni et al., 2008).

There are, therefore, twoways in which the spatial
scale objection can be interpreted. The first alternative
way is that GCMs are not skillful at single grid cells,

and therefore assessing their performance at single
grid cells is not meaningful; this criticismmight follow
from von Storch et al. (1993) and Randall et al. (2007),
and it appears that, if true, it would automatically
invalidate most literature on downscaling. The second
alternative way is that, although GCMs are allegedly
skillful even at single grid cells, it is not meaningful to
compare a grid cell directly to a single point; this is the
criticism by Schmidt (2008), and could also follow
from Christensen et al. (2007).

Our comparison for the contiguous USA addresses
both these arguments empirically. If themodels produce
“credible” results, “particularly at continental scales and
above”, this should be visible when comparing model
outputs to reality at the scale of the contiguous USA, an
area of 8 � 106 km2 (similar to Australia, which is
7.7 � 106 km2), and at the climatic scale, that is, on
the 30-year moving average, which should lessen the
effect of variability.

Except for this empirical addressing of the pro-
blem, the arguments can also be addressed theoreti-
cally. We will first deal with the first possible
argument, that GCMs are not skillful at single grid
cells whereas they are at larger scales. Climate models
make local simulations, and the global value is derived
from the local results. Can the global estimate be
credible, therefore, if the local estimate, from which
the global is derived, is not? The general belief is that
the answer to this question is positive, but this should
be justified (or negated) using probabilistic reasoning.
As an example, in statistical thermodynamics, one can
correctly estimate aggregate macroscopic quantities
(such as pressure, temperature, etc. of a gas volume)
even though microscopic quantities (such as position
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Fig. 3 Comparison between areal (over the USA) time series of NOAA (downloaded from http://www.ncdc.noaa.gov/oa/
climate/research/cag3/cag3.html) and areal time series derived through the Thiessen method; for (a) mean annual temperature
(adjusted for elevation), and (b) annual precipitation.
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and momentum of each molecule) are incorrect or not
known. The “correctness” of the macroscopic quanti-
ties has a proof based on concepts of probability
theory, such as the law of large numbers, the central
limit theorem or the principle of maximum entropy.
Such a proof cannot be extended from a large thermo-
dynamic system, say a mole of a gas, to climate, and a
simple parallelism does not suffice. We recall that in a
mole of a gas the macroscopic quantities are averages
of a number, NA ¼ 6.022 � 1023, of molecules, and
that independence between different molecules can be
assumed (e.g. Stowe, 2007), so that after simple cal-
culations using classical statistics we can see that the
uncertainty at the single molecule level is multiplied
by 1/

ffip
NA¼ 1.3� 10-12 when macroscopic properties

are calculated. This tiny number explains why we do
not need an accurate representation at the molecular
level to have the macroscopic quantity correct.

In contrast, spatial aggregation of climate model
outputs on a continent is calculated as the average of,
say, n¼ 300 grid point values and, apparently, n is much
less than NA. Moreover, the classical statistical inverse-
square-root law is not valid because independence does
not hold. Rather, a Hurst-Kolmogorov dependence is
more plausible in hydrometeorological processes both
in time and in space (Koutsoyiannis & Langousis, 2011).
As shown by Koutsoyiannis & Montanari (2007) using
temperature proxy records, under this dependence an
averaging size of n ¼ 1000 to 2000 is equivalent to the
averaging of two to three statistically independent points,
which does not give any hope for elimination of “local
noise” when averaging model outputs even at a global
scale.

Although in this analysis we used “local” and
“global”, which have a spatial meaning, the same
argumentation applies to temporality if we substitute
“short-term” and “long-term” for “local” and “global”.
Climate models perform their simulations at a high
temporal resolution. If the annual estimates are not
credible, then, for exactly the same reasons as those
presented above, the 30-year moving average, which
is derived from the annual, cannot be credible either.
The implications of the Hurst-Kolmogorov depen-
dence in predictability of climatic type (long-term
average of future values vs single future values) has
been elaborated in Koutsoyiannis (2010).

Finally, we will address theoretically the second
possible version of the spatial scale objection, that it is
not meaningful to compare point observations to the
value of a grid cell. The argument is that the grid cell,

which is of the order of 200 km � 200 km, provides
the general climate of the area, whereas a point is
affected by local factors. Daily temperatures may
indeed differ significantly at a distance of 200 km,
but the maximum temporal resolution we use is
monthly; and departures from the mean in monthly
temperature at points that close will be almost inden-
tical. The same applies to precipitation at over-year
scales (see also further demonstration and justification
in Koutsoyiannis et al., 2008 – Figs 2 and 3 in parti-
cular). There could, however, be a systematic bias; for
example, a point being consistently 1�C higher than a
nearby one or than the grid-cell average. This bias may
show in our comparison, since we make unbiased
estimation (λ1 + λ2 + λ3 + λ4 ¼ 1), but this is not a
problem, since we also use other metrics, such as the
correlation coefficient, which ignores bias.

Comparison of actual values rather than
departures from the mean

A common practice of climate modellers and the IPCC
is to make comparisons in terms of departures from the
mean (also called “anomalies”), rather than actual
values. Some of the metrics we use, i.e. the correlation
coefficients, are actually based on departures from
means, i.e. they neglect bias. However, we think that
actual values are important; as we will see, some
model outputs have enormous differences from reality
(up to 6�C in temperature and 300 mm in annual
precipitation at the climatic time scale), which are
not visible when differences from the mean are taken.

The GCMs calculate radiation balances, and,
according to the Stefan-Boltzmann law, the amount
of energy radiated is proportional to the fourth power
of the absolute temperature. This means that the ratio
of energy radiated at 15�C to the energy radiated at
12�C is (273+15)4/(273+12)4 ¼ 1.043. For a differ-
ence of 0.5�C instead of 3�C, the ratio becomes
1.007. The question then arises on what grounds a
model that errs by 3�C in the 20th century, that is, by
4.3% in radiative energy, could detect a future
decadal trend of 0.7%, that is, six times lower. The
same argument applies to precipitation and is even
more important in hydrology: the actual value of
over-year precipitation is an important factor deter-
mining the hydrological regime of a specific area (for
instance an area with 400 mm of precipitation has a
different hydrological regime from one receiving
600 mm of precipitation).

A comparison of local and aggregated climate model outputs with observed data 1099
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One of the earliest uses of departures from themean
was byKim et al. (1984), whowrote that “the reason for
considering the anomaly as an input rather than themean
value itself reflects our belief that while the long-term
climate of a GCM may be different from reality, the
GCM’s anomaly with respect to its climate may be
realistic.” They did not further justify this belief. The
National Climatic Data Center (NCDC, 2010) mentions
that global mean temperatures are difficult to determine
for two reasons: “Some regions have few temperature
measurement stations (e.g., the SaharaDesert) and inter-
polation must be made over large, data-sparse regions.
In mountainous areas, most observations come from the
inhabited valleys, so the effect of elevation on a region’s
average temperature must be considered as well.” They
then argue that using departures from the mean
addresses these two problems. However, for the first of
these problems, that is, data scarcity in some areas, there
is no explanation in what way using departures from the
mean could help. In any case, we do not have this
problem for the contiguous USA. The second problem
can also be easily addressed by making proper adjust-
ments, e.g. using the temperature gradient. In general,
departures from the mean discard valuable information
and ignore the facts described above about the Stefan-
Boltzmann law as far as temperature is concerned,
whereas in precipitation we also do not see any reason
for using departures from means.

Alternative evaluation methods

The critics and Schmidt (2008) mentioned alternative
evaluation methods which, in their opinion, might be
better than our method. These methods are model
inter-comparison, perturbed physics ensembles, and
comparison of statistical indices of model outputs to
statistical indices of measurements.

In model inter-comparison methods (e.g. Johnson
& Sharma, 2009), all model outputs could inter-
compare perfectly, but still they could all be wrong.
Similarly, perturbed physics ensembles (e.g. Murphy
et al., 2007) are a kind of sensitivity analysis, where
the response of a given GCM to modifications of its
parameters or inputs is investigated. Although we have
no reason to doubt that model inter-comparison and
perturbed ensembles could provide useful clues to
modellers concerning the behaviour of the models,
we do not see any way in which they could help assess
whether model outputs can be a “credible” estimation
of future climate.

The comparison of statistical indices of model
outputs to those of measurements can also be useful,
and for this reason our study includes such compar-
isons. However, we note that, whereas the failure of a
model to capture certain statistical parameters can dis-
prove the model, the opposite does not hold; if a model
correctly reproduces statistical parameters, this does
not necessarily mean that the model is a valid means of
deterministic prediction of the future. For example,
Koutsoyiannis (2006) presented a toy model that
simulates hydroclimatic processes and correctly repro-
duces the standard deviation, skewness, and Hurst
coefficient, and even reproduces the (known) past
evolution, but this model clearly cannot (and is not
intended to) provide a deterministic prediction of the
future (see also Koutsoyiannis et al., 2007).

RESULTS

Comparison at point basis

The results of the point comparison confirm the find-
ings of Koutsoyiannis et al. (2008). The conclusions
here are safer because the sample is much larger (55 vs
8 stations), and the selection of time series examined is
wider (Koutsoyiannis et al., 2008, examined only the
annual mean temperature and annual precipitation).

The results vary depending on the time scale. At
the monthly time scale the models generally reproduce
the sequence of cold-warm and wet-dry periods at all
stations examined. The average correlation coefficient
(for all stations and all models) is 0.909 for the tem-
perature and 0.256 for the precipitation. The average
coefficient of efficiency is 0.721 for the temperature
and -0.433 for the precipitation.

The statistics are dramatically different at the
annual time scale. The average correlation coefficient
drops remarkably and the average coefficient of effi-
ciency is negative regardless of the time series exam-
ined (Table 2). Furthermore, the Hurst coefficient and
the standard deviation are systematically underesti-
mated (Table 3).

The results for the standard deviation are better
than those for the Hurst coefficient (Figs 4 and 5). This
is expected because the models can reproduce rela-
tively well the seasonal variations in temperature and
precipitation, and the variations in these variables with
respect to latitude (Fig. 6). Moreover, the standard
deviation varies with latitude (and also with the proxi-
mity of the station to the sea). The reproduction of
dependence on latitude (and, in general, on the
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Table 3 Percentage of the stations in which the Hurst coefficient and the standard deviation are underestimated.

Temperature Precipitation

Hurst St Dev Hurst St Dev

Mean annual or total 74% 70% 79% 89%
Max monthly 72% 60% 67% 95%
Min monthly 66% 72% 68% 35%
Annual amplitude 69% 68%
Seasonal DJF 69% 70% 67% 77%
Seasonal JJA 77% 58% 59% 84%

Table 2 Average correlation coefficient and average coefficient of efficiency at the annual time scale for temperature and
precipitation.

Temperature Precipitation

Average correlation
coefficient

Average efficiency
coefficient

Average correlation
coefficient

Average efficiency
coefficient

Annual mean/total 0.122 -5.157 0.003 -3.008
Max monthly 0.062 -5.254 0.007 -1.266
Min monthly 0.033 -3.748 0.004 -167.368
Annual amplitude 0.008 -4.068
Seasonal DJF 0.051 -3.865 0.002 -3.750
Seasonal JJA 0.073 -7.495 -0.001 -12.168
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Fig. 4 Hurst coefficients (left) and standard deviations (right) of observed and modelled series for (a) mean annual
temperature, and (b) annual temperature amplitude.
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location on the globe) is satisfactory, and since stan-
dard deviation depends on latitude, it is not surprising
that it is also reproduced.

At the climatic (30-year moving average) time
scale, the correlation coefficient increases slightly for
temperature and precipitation in all the time series
examined, in contrast to the coefficient of efficiency,
which has, in most cases, large negative values
(Table 4, Fig. 7). However, in a large number of sta-
tions, the correlation coefficient has low or even nega-
tive values for both temperature and precipitation.
Therefore, large-scale fluctuations, and hence the
Hurst-Kolmogorov behaviour, are not reproduced.

Results vary with stations. At the De Bilt station,
The Netherlands (Fig. 8), the annual mean temperature
is reproduced relatively well in the TAR model runs
(but less so in AR4). While the models reproduce the
annual mean temperature quite well, they do not repro-
duce the time series of the other variables examined
(e.g. maximum and minimum monthly temperature,
annual temperature amplitude). In addition, the rela-
tively good fit is present only for the version of the
time series which is reported to have had some homo-
geneity and other errors corrected; the model outputs
do not fit the original time series (which is also shown
in Fig. 8). At the Durban station, South Africa (Fig. 8),
not a single model output shows the 1.5�C fall in mean
annual temperature during 1920–1960; instead, all
model outputs show a constant increase. At all stations
examined, there is not a single model run that success-
fully reproduces the time series of all variables
examined.

Model outputs are also in disagreement with actual
data in the change in the 30-year moving average tem-
perature and precipitation through the 20th century, as
well as in the maximum fluctuation of these variables

across the entire period of study (Fig. 9). In many cases,
the model outputs show a temperature rise when the
temperature actually falls. The differences in the direc-
tion of change are more marked in precipitation. An
interesting example is the station of Valdivia. The
observed change of the precipitation 30-year moving
average during the 20th century is -853.3 mm and the
maximum fluctuation is -877.4, whereas the results in
the model outputs vary from -106.5 to 24.3 for the
change and from -118.8 to 74.8 for the maximum
fluctuation. Most outliers in the lower panel of Fig. 9
are because of Valdivia.

Comparison at a large scale

As in point basis, results vary depending on the time
scale examined. At the monthly time scale the models
reproduce the sequence of warm-cold and wet-dry
periods. The highest (among the different models)
correlation coefficient is 0.984 for temperature and
0.287 for precipitation and the highest coefficient of
efficiency is 0.950 for temperature and -0.776 for
precipitation.

At the annual time scale, the correlation coefficient
has much lower values, sometimes near zero or even
negative, in all time series examined, while the
coefficient of efficiency is negative in all cases for both
temperature and precipitation. The Hurst coefficient and
the standard deviation are systematically underestimated
in the majority of model outputs (Table 5, Fig. 10).

At the climatic (30-year) time scale, the correla-
tion coefficient has slightly higher values than at the
annual time scale, but the coefficient of efficiency has
strongly negative values. In addition, model outputs
disagree with observed values in the fluctuation of the
30-year moving average during the 20th century and

Table 4 Average correlation coefficient and average coefficient of efficiency at climatic (30-year) scale for temperature and
precipitation.

Temperature Precipitation

Average correlation
coefficient

Average efficiency
coefficient

Average correlation
coefficient

Average efficiency
coefficient

Mean annual or total 0.328 -89.0 0.020 -125.9
Max monthly 0.207 -118.5 -0.024 -51.4
Min monthly 0.177 -117.4 0.006 -5456.7
Annual amplitude 0.027 -107.4
Seasonal DJF 0.243 -92.0 0.053 -208.0
Seasonal JJA 0.208 -180.4 -0.041 -1064.1
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the maximum fluctuation during the period examined
(Table 6, Fig. 11), and sometimes they indicate a rise
when there was actually a drop, and vice versa.

In general, the results differ substantially from the
observed time series (Fig. 12). The observed annual
mean temperature of the USA gradually rose between
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Fig. 7 Frequency distribution of (a) coefficient of efficiency and (b) correlation coefficient for temperature (left) and
precipitation (right) at the climatic (30-year) scale.
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Fig. 9 (a) Change of 30-year moving average in the 20th century, and (b) maximum fluctuation across the entire period for
temperature (left) and precipitation (right).

Table 5 Hurst coefficient and standard deviation of the observed areal time series.

Temperature Precipitation

Hurst St Dev (�C) Hurst St Dev (mm)

Mean annual or total 0.765 0.442 0.628 52.175
Max monthly 0.762 0.621 0.420 8.897
Min monthly 0.515 1.450 0.469 7.252
Annual amplitude 0.555 1.519
Seasonal DJF 0.662 0.990 0.412 20.666
Seasonal JJA 0.787 0.500 0.522 19.414

Table 6 Change of 30-year moving average in the 20th century (DT, DP) and maximum fluctuation (maxDT, maxDP) of the
observed areal time series.

Temperature (�C) Precipitation (mm)

DT maxDT DP maxDP

Mean annual or total 0.32 0.56 34.68 53.72
Max monthly 0.37 0.73 3.96 4.89
Min monthly 0.19 -0.81 1.34 3.70
Seasonal DJF 0.45 0.89 1.41 -8.75
Seasonal JJA 0.43 0.58 5.51 13.63
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Fig. 10 Difference between (a) observed and modelled Hurst coefficient, and (b) standard deviation of the areal temperature
(left) and precipitation (right) time series.
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Fig. 11 (a) Difference between observed and modelled change of 30-year moving average in the 20th century, and (b) the
maximum fluctuation, of the areal temperature (left) and precipitation (right) time series.
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1890 and 1940, then had a falling trend until 1970, and
from 1970 until today it had a slight upward trend.
None of the model outputs fit these fluctuations of the
annual mean temperature; most indicate a constant
increase that becomes steeper in the last decades of
the 20th century. The results closest to reality are the
outputs of PCM-20C3M, but even these do not
include the falling trend in 1940–1970 and have a
very low coefficient of efficiency in 30-year time
scale (only 0.05). However, this neutral performance
of the annual mean temperature seems to result for
the wrong reasons, as a result of averaging
throughout a year, as indicated by examination of the

maximum monthly temperature, minimum monthly
temperature, the annual temperature amplitude, and
the DJF and JJA seasonal temperature. Specifically,
the maximum monthly temperature, the annual tem-
perature amplitude and the JJA seasonal temperature
are underestimated, while all the other time series are
overestimated. The inter-annual fluctuations are not
reproduced and, as a result, the Hurst coefficient is
underestimated for all time series.

The results are worse for precipitation (Fig. 13).
The annual precipitation is overestimated by up to
300 mm. In annual precipitation, the model outputs
that are closer to reality (CGCM3-20C3M-T47) have a
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Fig. 12 Various temperature time series spatially integrated over the USA (mean annual, maximum monthly, minimum
monthly), at annual and 30-year scales.
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coefficient of efficiency equal to -5.11 and a correla-
tion coefficient of 0.171. The results are slightly better
at the time series of maximum monthly temperature
(coefficient of efficiency -0.57 and correlation coeffi-
cient 0.038) and JJA seasonal temperature (coefficient
of efficiency -0.58 and correlation coefficient 0.057),
but even there the best-fitting model outputs have a
negative coefficient of efficiency and a correlation
coefficient near zero.

The results for AR4 are no better than those for
TAR. In some, the annual mean temperature of the
USA is overestimated by about 4–5�C and the annual
precipitation by about 300–400 mm.

In general, the results at the large scale are poorer
than those of point comparison. One reason for this
is probably the use of the BLUE technique.
Specifically, in point comparison, rather than com-
paring each station to the nearest grid point, we
compared it to the best-fitting of the four nearest
grid points (more exactly, to the best-fitting unbiased
linear combination of the four nearest grid points).
This means that we made the comparison as generous
as possible for the model output, in order to avoid
influences of local factors. At the large scale, no such
treatment of models was possible, or needed; instead,
a simple areal integration of observed and modelled
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Fig. 13 Various precipitation time series spatially integrated over the USA (annual, seasonal DJF, seasonal JJA), at annual and
30-year scales.
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data was performed, and, therefore, the comparison is
less forgiving.

CONCLUSIONS AND DISCUSSION

It is claimed that GCMs provide credible quantitative
estimates of future climate change, particularly at con-
tinental scales and above. Examining the local perfor-
mance of the models at 55 points, we found that local
projections do not correlate well with observed mea-
surements. Furthermore, we found that the correlation
at a large spatial scale, i.e. the contiguous USA, is
worse than at the local scale.

However, we think that the most important ques-
tion is not whether GCMs can produce credible esti-
mates of future climate, but whether climate is at all
predictable in deterministic terms. Several publica-
tions, a typical example being Rial et al. (2004),
point out the difficulties that the climate system com-
plexity introduces when we attempt to make predic-
tions. “Complexity” in this context usually refers to
the fact that there are many parts comprising the sys-
tem and many interactions among these parts. This
observation is correct, but we take it a step further.
We think that it is not merely a matter of high dimen-
sionality, and that it can be misleading to assume that
the uncertainty can be reduced if we analyse its
“sources” as nonlinearities, feedbacks, thresholds,
etc., and attempt to establish causality relationships.
Koutsoyiannis (2010) created a toymodel with simple,
fully-known, deterministic dynamics, and with only
two degrees of freedom (i.e. internal state variables or
dimensions); but it exhibits extremely uncertain beha-
viour at all scales, including trends, fluctuations, and
other features similar to those displayed by the climate.
It does so with a constant external forcing, whichmeans
that there is no causality relationship between its state
and the forcing. The fact that climate has many orders
of magnitude more degrees of freedom certainly per-
plexes the situation further, but in the end it may be
irrelevant; for, in the end, we do not have a predictable
system hidden behindmany layers of uncertainty which
could be removed to some extent, but, rather, we have a
system that is uncertain at its heart.

Do we have something better than GCMs when
it comes to establishing policies for the future?
Our answer is yes: we have stochastic approaches,
and what is needed is a paradigm shift. We need
to recognize the fact that the uncertainty is intrinsic,
and shift our attention from reducing the uncertainty
towards quantifying the uncertainty (see also

Koutsoyiannis et al., 2009a). Obviously, in such a
paradigm shift, stochastic descriptions of hydrocli-
matic processes should incorporate what is known
about the driving physical mechanisms of the pro-
cesses. Despite a common misconception of stochas-
tics as black-box approaches whose blind use of data
disregard the system dynamics, several celebrated
examples, including statistical thermophysics and the
modelling of turbulence, emphasize the opposite,
i.e. the fact that stochastics is an indispensable,
advanced and powerful part of physics. Other simpler
examples (e.g. Koutsoyiannis, 2010) indicate how
known deterministic dynamics can be fully incorporated
in a stochastic framework and reconciled with the una-
voidable emergence of uncertainty in predictions.
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