European Geosciences Union General Assembly 2010 Vienna, Austria, 2-7 May 2010 Session HS5.5: Stochastics in hydrometeorological processes

Optimal infilling of missing values in hydrometeorological time series

Y. Dialynas, P. Kossieris, K. Kyriakidis, A. Lykou, Y. Markonis, C. Pappas, S.M. Papalexiou and D. Koutsoyiannis
Department of Water Resources and Environmental Engineering, National Technical University of Athens (www.itia.ntua.gr)

1. Abstract 4. Long range vs. short range dependence (2) /. Results for long range dependence 10.Validation by simulation (Long Range Dependence)
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missing values of hydrometeorological time series from measurements at
neighbouring times. The literature provides a plethora of methods, most of
which are reduced to a linear statistical interpolating relationship.
Assuming that the underlying hydrometeorological process behaves like
either a Markovian or a Hurst-Kolmogorov process we estimate the | | | | | . . | . | | | | , , , , , | | ~ N , e =Tl
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using all available data. In each Of the cases we determine the unknown 7 : . ! MSE — Hurst coefﬁcient curvesfor diﬂerent number oftime steps 5 8 10 12 11 16 18 20 22 21 26 28 30
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quantities (the requ.lrgd .number of nelghbourmg values or the sequence of | | ) e As Hurst coefficient increases, the optimal number of neighbouring Theoretical and simulated MSE - n curves for different values of Hurst coefficient
weights) so as to minimize the estimation mean square error. The results of Autocorrelation function for p, = 0.8 for the AR(1) and FGN processes

. © o ) , R o time steps for the interpolation decreases (minimum MSE)
;};Is)llircl;/teizt;%atlon are easily applicable for infilling time series in real-world For the FGN process (for example when the Hurst coefficient is H = 0.96), * A global average is preferable for low values of Hurst coetticient, while As clearly shown, the estimation of the MSE from the simulation (FGN

the autocorrelation for lag 40 (years) is as high as 0.23, whereas in the a small number of neighbouring time steps is required for high values model) is nearly identical to the theoretical MSE.

Markovian process the autocorrelation is practically zero even for much of Hur.st coefficient. | |
shorter lags. * In particular, for H=>0.80 the optimal nis 1.
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. Motivation 5. Methodology (1) 8. Results for short range dependence 11.Theory vs. Simulation (Short Range Dependence)

Missing values in hydrometeorological time series is a common e The interpolation problem refers to the estimation of an unknown o 2 N S B A
problem. quantity y from known values x* (i =1, ..., n) (measurements) of the same L4 T e A s e B
The literature provides a plethora of methods for infilling missing quantity and the same time period at different points (or at different time | : T T T T T e e e
values in time and space (Thiessen, Normal Ratio, BLUE, Organic periods on the same point). Mathematically the interpolation problem
Correlation, etc.). Almost all methods are based on a weighted average can be simply expressed as a linear equation:

of (non missing) observations (e.g. Koutsoyiannis and Langousis, 2010).
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Here we consider the simplest method where all weights are equal to 1. y=whx!+.. +w'x"+e
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Interpolation in space is typically made by taking the average of nearest
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points (eg within a certain distance), rather than the global average of where X, Y, €. random variables 4 O\ 4 i i . | e
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We seek to explore if this pract1ce 15 Jus titied and under which ¢ |n vector form: MSE — Autocorrelation coefficient curves for different time steps Theoretical and simulated MSE - n curves for different values of autocorrelation coefficient

conditions. In other words, we investigate when a global time average is

preferable over a local average and when not * In a Markovian process the number of the optimal neighbouring time

steps (1) depends on a critical value of autocorrelation for lag-one
We investigate two types of time dependence of the underlying process: where ; (= 0.24). Again, the estimation of the MSE from the simulation (AR(1) model) is

Markovian (short—range dependence) and Hurst — Kolmogorov (HK; : . e Thus, for Pp<p, a g]obal average 1S preferab]e, while for 0> P iny one nearly identical to the theoretical MSE.
long-range dependence). step forward and backward is needed.

3. Long range vs. short range dependence (1) 6. Methodology (2) 9. Optimal number of time steps 12. Conclusions

¢ Assumptions: S —meepons Inlong range dependence * In time series with Hurst — Kolmogorov behaviour, a local average using an optimal
2 \grr i s e et 0,65, p1=0.23 the left) for hich val number of neighbouring measurements is preferable over a global average on the

| —H=0.7,p1=032 (on the lett) for 18 . values infilling of a missing value. Depending on the Hurst coetficient, only a few forward

- —uo7sp-a of the Hurst coefficient, the and backward time steps are needed for infilling the missing value, which makes the

— TES0E.pI=0) optimal number of time process simpler. Particularly for an HK process with:
| ——H=0.85,p1=0.62

ro0.pi071  Steps is limited to one, o H=0.50-0.60, the global average is preferable

* Long range dependence, also known as the Hurst phenomenon, is
common in hydrological and other geophysical processes. In simple a | o . o
words it expresses the tendency of wet years to cluster into wet periods, o equal weighting factors w' =1 (for simplicity and direct applicability)

or of dry years to cluster into drought periods (e.g. Koutsoyiannis, * The optimal infilling produces minimum Mean Square Error (MSE):

2002). MSE = E[e*] =0, + 11,? whereas low values require o H=0.70, 4 time steps before and 4 after the interpolation time
On the other hand, short range dependence appears in Markovian where u, = Ele] e T elobal average. o H=0.72, 3 time steps before and 3 after the interpolation time
processes where the future does not depend on the past when the (Var[e]) % o e 5 10 1214 16 15 20 29 24 26 25 3 o H=0.74, 2 time steps before and 2 after the interpolation time
present is known. - n o H=0.80, 1 time step before and 1 after the interpolation time

he AR(1) (autoregressive of order 1) model is a very popular * Under the above assumptions, the MSE can be calculated as: MSE — n curves for different Hurst coefficients In time series with Markovian behaviour the optimal number of neighbouring time
. 5 . yP p. ) B 2] A e e e N S el ~ steps depends on a critical value of autocorrelation. Specifically:
representative of Markovian processes, whereas the Fractional Gaussian [ i " ) In short range dependence O T T T T O OO O O O T T A
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o the setting is stationary
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, , —p1=0.22 o p<0.24, the global average is preferable
Noise (FGN) process (e.g. Mandelbrot, 1965), or HK process, is widely AL (on the right) the global
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. ) : e o p=0.24, 1 time step before and 1 after the interpolation time
used for reproducmg long range dependenCe. L .average 15. req}ﬂred for the 5 _,_..::.1={;,:;5 The methodology is appropriate for quick infilling of very few missing values (not
The major difference in the above models is that while in AR(1) the \ mfcerpolatlon n procgsses ' pi=07 for long periods with missing values). The use of local average has an additional
autocorrelation declines exponentially, in HK it is a power function of with low autocorrelation, o advantage, over the global average, that it does not reduce the variance of the time
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where n: number of neighbouring time steps




