Performance evaluation and interdependence of parameter estimators of the Hurst-Kolmogorov stochastic process H. Tyralis and D. Koutsoyiannis, Department of Water Resources and Environmental Engineering, National Technical University of Athens (www.itia.ntua.gr/dk) ### 1. Abstract We investigate three methods for simultaneous estimation of the Hurst parameter (H) and the standard deviation (σ) for a Hurst-Kolmogorov stochastic process, namely the maximum likelihood method and two methods based on the variation of the standard deviation or of the variance with time scale. We show that the simultaneous estimation of the two parameters is important, albeit not given appropriate attention in the literature, because of the interdependence of the two parameter estimators. In addition, we test the performance of the three methods for a range of sample sizes and H values, through a simulation study and we compare it with other known results for other estimators of the literature. #### 7. Comparison between ML, LSSD, LSV and alternative methods Estimation method 0.6 0.7 0.8 0.9 0.6 | 0.7 | 0.8 | 0.9 .604 .708 .809 .912 .024 .024 .026 .027 .565 .661 .752 .847 .601 .700 .804 .902 .023 .023 .023 .021 .599 .700 .799 .899 .028 .029 .040 .040 .040 .040 .040 .000 Var. of Residuals .009 .008 .011 .015 2nd best - In this table the mean of the estimated *H*'s and the corresponding RMSE for different estimation methods are shown. They were produced by a simulation study using 200 independent realizations 8 192 long. - The three methods (ML, LSSD, LSV) seem to be unbiased for this size. - They also seem to surpass the other methods in terms of RMSE. Monte Carlo RMSE methods versus the Performance in terms of RMSE for results in higher errors when estimating σ . different *H* values. An increase of *H* true *H* value for the three different .036 | .033 | .035 | .055 Details about the above methods (excluding ML, LSSD, LSV) in Taqqu, M., Teverovsky, V. & Willinger, W. (1995) Estimators for long-range dependence: an empirical study. Fractals 3(4), 785-798 8. Influence of H to the estimators' performance #### 10. Conclusions - Three estimators (ML, LSSD, LSV) relying on the structure of the HK stochastic process are used to estimate its parameters. - These estimators have the advantage to be more accurate when compared to the usual estimators of the literature. - The finite sample properties of these estimators are explored. - They seem to behave well for small samples but their performance declines for large values of the Hurst parameter *H*. - Their main advantage is they estimate simultaneously the Hurst parameter and the standard deviation σ of the stochastic process. - This property is essential because of the dependence of the two parameters. For example, the estimate of σ given H, is not guaranteed to vary slowly with small changes of *H*. - Some theoretical results concerning the asymptotic properties of the LSV estimator with respect to H and its bracketing in [0, 1] are also given. ### 2. Definition of Hurst-Kolmogorov process - Let X_i be a Gaussian stationary stochastic process with i = 1, 2, ...denoting discrete time. We form the vector of identically distributed variables $X_n := (X_1, ..., X_n)$. - The mean of the process is $\mu := E[X_i]$ and the variance of the process is $\sigma^2 := \operatorname{Var}[X_i].$ - Let *k* be an integer that represents a timescale larger than 1, the original time scale of the process X_i . The mean aggregated stochastic process on that timescale is: $$X_{i}^{(k)} := (1/k) \sum_{l=(i-1)}^{i} X_{l}$$ • The following equation defines the Hurst-Kolmogorov process (HKp) $$(X_{i}^{(k)} - \mu) \stackrel{\mathbf{d}}{=} \left(\frac{k}{l}\right)^{H} (X_{j}^{(l)} - \mu), \ 0 < H < 1$$ • The autocorrelation function of the mean aggregated stochastic process for any aggregated timescale k is independent of k and given by the $$\rho_{j}^{(k)} = \rho_{j} = |j+1|^{2H} / 2 + |j-1|^{2H} / 2 - |j|^{2H}$$ 3. The maximum likelihood (ML) estimator Mean of estimated H's Series Length ### 11. Appendix – Theoretical results (1) #### Derivation of the ML estimator The likelihood function is $p(\boldsymbol{\theta}|\boldsymbol{x}_n) = \frac{1}{(2\pi)^{n/2}} \frac{1}{\sigma^n} \left[\det(\boldsymbol{R}) \right]^{-1/2} \exp\left[-\frac{1}{2\sigma^2} \left(\boldsymbol{e}^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{e} \left(\mu - \frac{\boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{e}}{\boldsymbol{e}^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{e}} \right)^2 + \frac{\boldsymbol{e}^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{e} \boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{x}_n - (\boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{e})^2}{\sigma^{\mathrm{T}} \boldsymbol{p}^{-1} \boldsymbol{e}} \right]$ This function is maximized when $\hat{\mu} = \frac{\mathbf{x}_n^1 \mathbf{R}^{-1} \mathbf{e}}{\mathbf{e}^T \mathbf{R}^{-1} \mathbf{e}}$ because \mathbf{R} is a positive definite matrix and $e^{T} \mathbf{R}^{-1} e > 0$ After substituting this value of μ the ML estimates of σ is given after equating the partial derivative of the log-likelihood function to 0. $$\frac{\partial \ln[p(\boldsymbol{\theta}|\mathbf{x}_n)]}{\partial \boldsymbol{\sigma}} = -\frac{n}{\boldsymbol{\sigma}} + \frac{1}{\boldsymbol{\sigma}^3} (\mathbf{x}_n - \overset{\wedge}{\mu} \mathbf{e})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{x}_n - \overset{\wedge}{\mu} \mathbf{e})$$ So we can obtain the estimate of σ from the following equation $$\stackrel{\wedge}{\sigma} = \sqrt{\frac{(\mathbf{x}_n - \stackrel{\wedge}{\mu} \mathbf{e})^{\mathrm{T}} \stackrel{\wedge}{\mathbf{R}}^{-1} (\mathbf{x}_n - \stackrel{\wedge}{\mu} \mathbf{e})}{\mathbf{e}}}$$ and the *H* estimate from the minimization of the following function $$g_1(H) := -\frac{n}{2} \ln[(\mathbf{x}_n - \frac{\mathbf{x}_n^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{e}}{\mathbf{e}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{e}} \mathbf{e})^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{x}_n - \frac{\mathbf{x}_n^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{e}}{\mathbf{e}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{e}} \mathbf{e})] - \frac{1}{2} \ln[\det(\mathbf{R})]$$ ## 12. Appendix – Theoretical results (2) #### Bracketing of *H* for the LSV estimator Suppose that $H_2 > 1$ and $\sigma_2 > 0$ (It's easy to prove that an estimated $\overset{\wedge}{\sigma} > 0$ always). Now for any $H_1 \in (0, 1)$ we can always find a $\sigma_1 > 0$, such that $c_k(H_1) k^{2H_1} \sigma_1^2 - s^{2(k)} < 0$ for every k. For these values of H_1 and σ_1 : $|c_k(H_1)|^2 + |c_k(H_2)|^2 |$ proves that $e^2(\sigma_1, H_1) < e^2(\sigma_2, H_2)$. So $e^2(\sigma, H)$ attains its minimum for $H \le 1$. This property is important since other estimators permit estimated values of H higher than 1, for which a HKp cannot be defined.