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1. What is memory, short memory and 
long memory?
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What do books say about “memory”?

� Papoulis (1991; Probability, Random Variables, and Stochastic 

Processes ≡ my gospel) does not use the term memory for a 

stochastic process

� He only defines memoryless systems, as those whose outputs y(t) 

are given as a function g(x(t)) of the input x(t) at the same time t

� This involves two stochastic processes and cannot be applied to a 

single stochastic process

� Beran (1994, Statistics for Long-Memory Processes) defines long and 

short memory intuitively and relates it to autocorrelation ρ(j) for lag j:

� “The intuitive interpretation of [ρ(j) ≈ cρ|j|–a] is that the process 

has long memory”

� “in contrast ... processes with summable [exponentially decaying] 

correlations ... are also called processes with short memory or 

short-range correlations or weak dependence”
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How intuitive is the term “memory”? 
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� The panels on the left show 
different time windows of the 
same time series

� The panel above shows how 
autocorrelation increases with 
window length, starting from 
about 0 at the smallest window

� Does the high autocorrelation 
reflect memory or amnesia?
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Notes on the construction of the previous 
example

� The time series was constructed by superposition of:

� A stochastic process with values mj ~ N(2, 0.5) each lasting a 

period τj exponentially distributed with E [τj] = 50 (red line);

� White noise N(0, 0.2)

� The process of our example is completely stationary

� Thus, the autocorrelation function is independent of time 

location and the autocorrelogram is fully meaningful

� However, an estimate thereof from a few terms of a time series 

is inaccurate

� Nothing in the process reminds us of any type of memory

� The high autocorrelation is a result of the changing local 

average
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Slow decaying autocorrelation does not reflect 
long-term memory but long-term change
� The first who pointed this out was Vit Klemes (1974)

� He wrote “It is shown that the Hurst phenomenon is not necessarily an 
indicator of infinite memory of a process”

� He compared the memory-based interpretation to the  Ptolemaic 
planetary model, which worked well but hampered progress in astronomy 
for centuries

� Unfortunately, he used the term “nonstationarity” for change, while in 
fact his final explanatory model was stationary (and he noted it)

� The Hurst phenomenon, named after Hurst (1951) who studied several 
geophysical time series, essentially reflects long-term changes, even though 
Hurst formulated it in a slightly different manner: 

� “Although in random events groups of high or low values do occur, their 
tendency to occur in natural events is greater”

� Earlier than Hurst, Kolmogorov (1940) had proposed a mathematical model 
that can describe stochastically this natural behaviour

� Here the name Hurst-Kolmogorov (HK) dynamics is used instead of the term 
“long-term memory” and the mathematical model is termed the HK process 
(from Koutsoyiannis and Cohn, 2008)



2. What is climate?
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A typical definition and some remarks

� “Climate [is] the long-term average of conditions in the atmosphere, ocean, 
and ice sheets and sea ice described by statistics, such as means and 
extremes” (U.S. Global Change Research Program, 2009)

� Remark 1: The definition may have missed the importance of the occurrence, 
circulation, and phase transition of water in the land and the atmosphere, as 
well the fact that water is the regulator of the entire climate system; hence, 
it may misrepresent the links of Climate with Hydrology

� Remark 2: To study “statistics, such as means and extremes” one may need 
some knowledge of Statistics

� Remark 3: To study “long-term average conditions” one may need to shape 
multi-scale representations of processes and, hence, one may need some
more advanced knowledge of Statistics

� Remark 4: Inappropriate representations of hydroclimatic processes, based 
on Classical Statistics (assuming independence in time), abound; these have 
severe consequences in the perception of climate, as well as in hypothesis 
testing, estimation and prediction



D. Koutsoyiannis, Memory in climate and things not to be forgotten 9

How do we 
expect climate 
to look like?

� Both time series are 
synthetic and have the 
same marginal 
properties:

� Size n = 216 = 65536

� Mean μ = 5

� Standard deviation 
σ = 1

� Normal distribution

� In both time series 
“climatic” averages for 
scales 25 and 210 are 
also given in addition to 
the “annual” plot 0
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Static climate, i.e. a result of a purely random process?

Changing climate, i.e. a result of an HK process?
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HKC is a non-
static, all-scales-
changing climate

0

1

2

3

4

5

6

7

8

9

10

0 8192 16384 24576 32768 40960 49152 57344 65536

Time

V
a
lu
e

Scale 1 Scale 32 Scale 1024

0

1

2

3

4

5

6

7

8

9

10

0 8192 16384 24576 32768 40960 49152 57344 65536

Time

V
a
lu
e

Scale 1 Scale 32 Scale 1024

Static climate (SC) ≡ Random climate (RC)

Changing or Hurst-Kolmogorov climate (HKC)

� Upper time series:

� Pure randomness (no 
dependence in time)

� Change occurs only at 
scale 1

� Climatic (i.e. long-
term) averages are flat

� Lower time series:

� HK dependence with 
Hurst coefficient 
H = 0.99 (see below)

� Change occurs at all 
scales

� Real world evidence  (see 
below) supports HKC rather 
than SC 

If climate is ever changing, why 
coin a term “climate change”?



3. What is the HK process, how it describes 
the multi-scale properties of a process, and 
which are its consequences in Statistics? 
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Properties of the 

HK process  

At an arbitrary observation 

scale k = 1 (e.g. annual) 
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The Hurst-Kolmogorov (HK) process and its multi-scale 
stochastic properties

� The HK process does not provide a “perfect” and “detailed” mathematical tool for 
geophysical processes

� Rather it is the most parsimonious and simplest alternative to the classical, 
independence-based, statistical model: 

� It can represent a non-static climate using a single parameter, the Hurst coefficient 
H, additional to those of classical statistics

� It produces very simple expressions for all scales

� Also, it is ideal for the perception and intuition development of a non-static climate 

All properties are power 
laws of scale k, lag j, 
frequency ω

Can serve as a definition 
of the HK process
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True values →  Mean, μ Standard deviation, σ Autocorrelation ρl for lag l 
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Note: n΄ := σ
2
/Var[x

 –] = n
2 – 2H

 is the “equivalent” or “effective” sample size: a sample with size n΄ in CS 

results in the same uncertainty of the mean as a sample with size n in HKS.  

See Koutsoyiannis (2003) for derivations and for more accurate expressions.  

 

Impacts on statistical estimation: Hurst-Kolmogorov 
Statistics (HKS) vs. Classical Statistics (CS)
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Definition

The variance of the estimator of mean 

Classical statistics (CS)  
is here (H = 0.5)

An example for 
H = 0.9 and n = 100

� The equivalent 
(in a CS sense) 
sample size 
n' = 1000.2 = 2.5! 

� The uncertainty 
in the estimation 
of mean is n/n' = 
40 times greater 
than in CS

� To make the 
uncertainty 
equal to that in 
CS for sample 
size 100 (i.e. to 
make n' = 100) 
we need a real 
sample size n = 
1001/0.2 = 1010!

 n΄ := σ
2
/Var[x

 –] = n
2 – 2H
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The bias of the classical estimator of standard 
deviation

Classical statistics (CS)  
is here (H = 0.5)

An example for 
H = 0.9 and n = 100:

� There is a -22% 
bias

� In addition, the 
uncertainty in 
the estimation is 
31% greater 
than in CS (not 
shown in figure)

The bias tends to 
-100% as H tends to 1
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The bias of the classical estimator of 
autocorrelation

At lag 50 the 
bias is -135%

At lag 1 the 
bias is -23%

At lag 4 the 
bias is -55% At lag 20 and beyond the sample  

estimate becomes negative!

An example for H = 0.9 and n = 100: Huge bias at all lags
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Alternative tools to explore the HK behaviour in 
time series
� Autocorrelogram? 

� Problematic, because of too high bias

� Periodogram?

� Very problematic, because it is difficult to obtain analytical expressions of 
bias and uncertainty, and it may be too rough/scattered (unless the 
sample size is very high)

� Rescaled range? (the original Hurst’s method)

� Most inappropriate (too much dispersion, high biases, too uncertain 
estimates, lack of analytical expressions of statistics; see Koutsoyiannis 
2002, 2003)

� Residuals of variance (Taqqu et al., 1995) also termed detrended fluctuation 
analysis (DFA; Peng et al., 1994)

� Problematic, as it treats biased and uncertain quantities as if they were 
unbiased and certain

� Climacogram? (term coined in Koutsoyiannis, 2010)

� Better, provided that we are aware of (and adapt for) biases and
uncertainties, for which there exist analytical expressions
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A typical example of misuse in studies detecting 
HK behaviour
� Several studies based on exploration of the periodogram, the rescaled range, 

or the DFA, detect a Hurst coefficient H > 1

� This is mathematically absurd, because in a (stationary) HK process (also 

known as fractional Gaussian noise), 0 ≤ H ≤ 1

� Even in a cumulative (and thus nonstationary) HK process (also known as 

fractional Brownian noise), again 0 ≤ H ≤ 1 (the cumulative nonstationary 

process is characterized by the same H as its corresponding stationary 

process) 

� The reported H > 1 values are obtained because of inappropriate estimators 

(based e.g. on slopes of graphs of the explored quantities); their typical 

interpretation should be that H must be close to 1

See additional discussion in Tyralis and Koutsoyiannis (2010), which includes:

� Two versions of climacogram-based estimation of the process parameters

� Streamlining of a precise Maximum Likelihood method for parameter estimation

� Comparisons of the three proposed methods as well as intercomparisons with other 
popular methods
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Change and scale: The climacogram
� This is simply a (logarithmic)  plot of the standard deviation σ(k) at scale k

vs. the scale k

� σ(k) can be calculated directly from the time averaged process xi
(k)

� σ(k) is a simple transformation of the autocorrelogram ρj (where j is lag), i.e.:

� In classical statistics, σ(k) = σ/√k, which indicates a straight line with slope -0.5 
in the logarithmic plot 

� In general, the asymptotic 

slope (for high k) in the 

logarithmic plot determines 

the Hurst coefficient: 

H = 1 + slope

� Slopes milder than -0.5, that 

is, H values in the interval 

(0.5, 1), indicate long-range 

dependence
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An important note on the use of the climacogram
� In the HK process, the standard 

deviation σ(k) at scale k is related 
to that at scale 1, i.e. σ, by

� However, due to bias, the 
sample standard deviations are 
not directly comparable to σ(k)

but to the quantities

� Explanation: if (s(k))2 is the standard estimator of the variance at scale k, then 

it can be shown that E[(s(k))2] = (σ΄n
(k))2

� The example above was constructed assuming a sample with size n = 100 

from an HK process with H = 0.9

� Notice that the slope of the curve “adapted for bias” at scale 10 is -0.21 

instead of -0.1 (that of the theoretical climacogram)
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4. Does empirical evidence support the 
hypothesis of HKC? 
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Example 1: 
Annual 
minimum water 
levels 
of the Nile

� The longest available 
instrumental hydroclimatic data 
set (813 years)

� Hurst coefficient H = 0.84

� The same H is estimated from 
the simultaneous record of 
maximum water levels and from 
the modern record (131 years) 
of the Nile flows at Aswan
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Example 2: The lower 
tropospheric temperature

Suggests an HK behaviour with 

a very high Hurst coefficient: 

H ≈ 0.99

Data: 1979-2009, from 
http://vortex.nsstc.uah.edu/public
/msu/t2lt/tltglhmam_5.2
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Example 3: The Monthly 
Atlantic Multidecadal
Oscillation (AMO) Index

Suggests an HK behaviour with a 

very high Hurst coefficient: H ≈ 0.99

Data: 1856-2009, from NOAA, 
http://www.esrl.noaa.gov/psd/
data/timeseries/AMO/
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Example 4: The annual rainfall in Maatsuyker Island 
(Australia)
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Maatsuyker Island Lighthouse (Australia), 
coordinates: -43.65N, 146.27E, 147 m, 
WMO station code: 94962
Data: 1892-2004, available from 
http://climexp.knmi.nl/data/pa94962.dat

Suggests an HK behaviour with 

a very high Hurst coefficient: 

H ≈ 0.99
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Example 5: The mean annual temperature at Svalbard 
(Norway)

Svalbard Luft (Norway), 
coordinates: 78.25N, 15.47E, 29 m, 
WMO station code: 1008 SVALBARD_LUFT
Data: 1912-2009, available from
http://www.unaami.noaa.gov/analyses/sat/sat0
1008.d and
http://climexp.knmi.nl/data/ta1008.dat

Suggests an HK behaviour with 

a high Hurst coefficient: 

H ≈ 0.95
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Example 6: Iowa fine resolution rainfall
Seven storm events of high temporal 
resolution, recorded by the 
Hydrometeorology Laboratory at the Iowa 
University (Georgakakos et al., 1994)
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Suggests an HK behaviour with a very 
high Hurst coefficient: H ≈ 0.99 
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Example 7: The Greenland temperature proxy during the 
Holocene

Reconstructed from the 
GISP2 Ice Core (Alley, 2000, 
2004)
Data from: 
ftp.ncdc.noaa.gov/pub/data/
paleo/icecore/greenland/
summit/gisp2/isotopes/gisp2
_temp_accum_alley2000.txt
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Suggests an HK behaviour with a 

high Hurst coefficient: H ≈ 0.94
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5. Does long-range dependence in the HKC 
imply lower predictive uncertainty?
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Unconditional and conditional entropy in HK

� The graph was 
constructed using 
analytical equations by 
Koutsoyiannis (2005) 
and Koutsoyiannis et al. 
(2007)

� The following 
assumptions were made:

� H = 0.90 (known a 
priori)

� Sample size n = 100

� Sample standard 
deviation s = 1

� Normal distribution
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For scale k = 2, 
even the 
conditional 
uncertainty of a 
HKC prediction is 
higher than in RC

For a climatic scale k = 30, 
the unconditional and 
conditional standard 
deviations in HKC are 
respectively 5 and 3 times 
higher than in RC

For scale k = 1 (say annual), 
the unconditional 
uncertainty of a HKC 
prediction is higher than in 
RC, but that conditional on 
the known past is lower
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Hurst coefficient
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Generalized comparison of HKC with RC 
predictions
� The graph was 

constructed with 
same assumptions 
as the previous 
one but with 
varying sample 
size n and Hurst 
coefficient H, which 
is assumed 
a priori known

� In reality, the results 
are worse because H
is estimated from data

� Practical conclusion: 
except for scale 1 (e.g. 
annual) the HK 
behaviour increases 
predictive uncertainty

The curves show the scale k in which the HKC 

uncertainty (conditional on known past) becomes 

greater than in RC 
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Does switching from 
stochastic to deterministic 
description of climate enable 
long term predictability?
� The Figure on the right shows “Long-term Earth 

system projections for different CO2 emission and 
storage scenarios” (from Shaffer, 2010)

� They refer to several climatic variables including 
“mean atmosphere warming” and “mean ocean 
warming”

� They extend up to 100 000 A.D. (!)

� The information provided is supposed to 
support “geoengineering” options, e.g. the 
“effectiveness and consequences of carbon 
dioxide sequestration”

� Question 1: Do deterministic models reproduce the 
past? (see my answer in Koutsoyiannis et al., 2008, 
Anagnostopoulos et al., 2010)

� Question 2: Does knowledge of deterministic 
dynamics enable reliable future predictions? (see my 
answer in Koutsoyiannis, 2010)



6. Conclusion
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Concluding remarks

� Change is Nature’s style and occurs at all time scales

� Climate is no exception: it is ever changing

� By definition, the very notion of climate relies on Statistics—in 
particular, on long-term statistical properties of natural processes

� Classical Statistics is inconsistent with real-world climate; rather, it 
corresponds to a static climate

� Hurst-Kolmogorov Statistics is the key to perceive a multi-scale 
changing climate and model the implied uncertainty and risk

� Hurst-Kolmogorov Statistics has marked differences from Classical 
Statistics, which are often missed; thus, it implies:

� Dramatically higher uncertainty of statistical parameters of location 

� High negative bias of statistical parameters of dispersion and 
dependence

� Dramatically higher predictive uncertainty

Ὕβριν χρή σβεννύναι μᾶλλον ἤ πυρκαϊήν (Ηράκλειτος, απόσπασμα 43)

More than a fire, one needs to extinguish hubris (Heraclitus, fragment 43)
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