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Abstract 

The study of precipitation has been closely linked to the birth of science, by the turn of the 7th 

century BC. Yet, it continues to be a fascinating research area, since several aspects of precipitation 

generation and evolution have not been understood, explained and described satisfactorily. Several 

problems, contradictions and even fallacies related to the perception and modelling of precipitation 

still exist. The huge diversity and complexity of precipitation, including its forms, extent, 

intermittency, intensity, and temporal and spatial distribution, do not allow easy descriptions. For 

example, while atmospheric thermodynamics may suffice to explain the formation of clouds, it fails 

to provide a solid framework for accurate deterministic predictions of the intensity and spatial 

extent of storms. Hence, uncertainty is prominent and its understanding and modelling unavoidably 

relies on probabilistic, statistical and stochastic descriptions. However, the classical statistical models 

and methods may not be appropriate for precipitation, which exhibits peculiar behaviours including 

Hurst-Kolmogorov dynamics and multifractality. This triggered the development of some of the 

finest stochastic methodologies to describe these behaviours. Inevitably, because deduction based 

on deterministic laws becomes problematic, as far as precipitation is concerned, the need for 

observation of precipitation becomes evident. Modern remote sensing technologies (radars and 

satellites) have greatly assisted the observation of precipitation over the globe, whereas modern 

stochastic techniques have made the utilization of traditional raingauge measurements easier and 

more accurate. This chapter reviews existing knowledge in the area of precipitation. Interest is in the 

small- and large-scale physical mechanisms that govern the process of precipitation, technologies 

and methods to estimate precipitation in both space and time, and stochastic approaches to model 

the variable character of precipitation and assess the distribution of its extremes.  
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1 Introduction  

1.1 The entrancement of precipitation 

Precipitation and its related phenomena such as cloud formation and movement, thunders, rainbow, 

are spectacular (Fig. 1) due to their huge diversity and complexity. This complexity makes them 

difficult to comprehend, model and predict. Hence, it is understandable that ancient civilizations 

explained these phenomena in a hyperphysical manner, assuming that deities were responsible for 

their creation. For example, in the Greek mythology some of the phenomena were deified (e.g. Iris is 

the name of a goddess as well as of the rainbow) whereas the most impressive among them, 

thunders in particular, were attributed to the action of the King of the Gods, Zeus (Jupiter in the 

Roman mythology; similar deities are Indra in Hinduism, Thor in Norse, etc.). Demystification of 

these processes and formation of the physical concept of the hydrological cycle is closely related to 

the birth of science, by the turn of the 7th century BC. While the hydrological cycle was founded as a 

concept in the 6th century B.C. by Anaximander, Anaximenes and Xenophanes, and was advanced 

later by Aristotle (Koutsoyiannis et al., 2007), certain aspects related to precipitation can be 

understood only within the frame of modern science. The fact that a solid or liquid hydrometeor 

resists gravity and suspends in the atmosphere in a cloud is counterintuitive and needs advanced 

knowledge of physics, fluid dynamics and statistical thermodynamics to be understood and 

modelled.  

The complexity of the processes involved in precipitation, and their enormous sensitivity to the 

initial conditions (where tiny initial differences produce great differences in the final phenomena), 

retain, to this day, some of the ancient mythical and magical magnificence of the societal perception 

of precipitation. People still believe in hyperphysical interventions in matters concerning 

precipitation. As put by Henri Poincaré (1908), father of the notion of “chaos”: 

Why do the rains, the tempests themselves seem to us to come by chance, so that many 

persons find it quite natural to pray for rain or shine, when they would think it ridiculous to 

pray for an eclipse? 

Amazingly, however, and at the very same time, there is little disbelief in some climate modellers’ 

prophecies (or outputs of global circulation models—GCMs) of the precipitation regimes over the 

globe in the next 100 years or more. This indicates an interesting conflict between perceptions of 

precipitation: that it is so unstable, uncertain and unpredictable that prayers are needed to invoke 

precipitation, and that for some scientists the future evolution of precipitation on Earth is still 

predictable in the long run. The latter belief concerns not only the general public, but also the 

scientific community. For example, a Google Scholar search with either of the keywords 

“precipitation” or “rainfall” plus the keywords “climate change” and “GCM” locates 21 700 

publications (as of August 2009), of which about 200 have been cited 100 times or more. This long 

list of results appears despite the fact that climate modellers themselves admit to the performance 

of their models being low, as far as precipitation is concerned (Randall et al., 2007). An independent 

study by Koutsoyiannis et al. (2008), which compares model results for the 20th century with 

historical time series, has shown that the models are not credible at local scales and do not provide 

any basis for assessment of future conditions. These findings demonstrate that, even today, the 

perception of precipitation, not only by the general public, but even by scientists specialized in the 
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study of precipitation, meteorologists, climatologists and hydrologists, continues to be 

contradictory, problematic and, in some sense, mysterious. 

     

   

Fig. 1 Precipitation and related phenomena (from upper-left to lower-right): Monsoon rainfall (Pune, India, 

September 2009; photo by first author); snowy mountainous landscape (Mesounta, Greece, December 2008; 

from www.mesounta.gr/mesounta/ist_eik1/07_xion_03.htm); thunder in the Parthenon (Athens, Greece, 30th 

June 2010; from http://www.dailymail.co.uk/news/worldnews/article-1290289/Greece-lightning-Ancient-

Parthenon-lit-storm-breaks-Athens.html); rainbow (Mystras, Greece, April 2008, from 

laspistasteria.wordpress.com/2008/04/08/rainbow-3/).  

1.2 Forms of precipitation 

Precipitation occurs in a number of forms, either liquid or solid or even mixed (sleet). Liquid 

precipitation includes rainfall and drizzle, where the former is the most common and most 

significant, and the latter is characterized by much smaller drop sizes and lighter intensity. Dew is 

another liquid form, formed by condensation of water vapour (mostly at night) at cold surfaces (e.g. 

on tree leaves).  

Most important among the solid forms of precipitation are snow and hail. At high latitudes or at high 

altitudes snow is the predominant form of precipitation. Snowfall may occur when the temperature 

is low and snow accumulates at the ground until the temperature rises sufficiently for it to melt. On 

the other hand, hail may fall in relatively high temperature and usually melts rapidly. While 

hailstones are amorphous and usually large (one to several centimetres diameter), snowflakes are 
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symmetrical and visually appealing with a tremendous variety of shapes, so that no two snowflakes 

are the same. 

Occult precipitation is induced when clouds or fog is formed in forested areas and it includes liquid 

(fog drip) and solid (rime) forms. Fog drip occurs when water droplets are deposited on vegetative 

surfaces, and the water drips to the ground. Rime is formed when supercooled air masses encounter 

exposed objects, such as trees, that provide nucleation sites (see sections  2.1 and  2.2) for formation 

and buildup of ice, much of which may fall to the ground in solid or liquid form. In some places (e.g. 

in humid forested areas) precipitation of this type may reach significant amounts; for example rime 

constitutes about 30% of the annual precipitation in a Douglas fir forest in Oregon (Harr, 1982; 

Dingman, 1994) and about 30% of total precipitation in fir forested mountainous areas of Greece 

(Baloutsos et al., 2005), and it is the sole precipitation type in the rainless coast of Peru (Lull, 1964; 

Dingman, 1994). 

1.3 Precipitation metrics 

The principal metric of precipitation is the rainfall depth h (commonly expressed in mm) that falls at 

a specific point during a certain period of time t; this can be easily perceived and measured by a 

bucket exposed to precipitation. A derivative quantity is the precipitation intensity,  

 i := 
dh

dt
  (1) 

with units of length divided by time (typically mm/h, mm/d, mm/year). Since it cannot be measured 

directly (at an instantaneous time basis), it is typically approximated as  

 i = 
Δh

Δt
  (2) 

where Δh is the change of the depth in a finite time interval Δt. The intensity derived from equation 

(2) is a time averaged value—but at a point basis. Spatial averaging at various scales is always very 

useful as can be seen in section  1.4. This averaging needs precipitation measurement at several 

points, followed by appropriate numerical integration methods (see section  3.1). While the 

traditional precipitation measurement networks are sparse, thus making the estimation of areal 

precipitation uncertain, in the recent decades new measurement techniques have been developed 

implementing radar and satellite technologies (sections  3.2 and  3.3). These provide a detailed 

description of the spatial distribution of precipitation, thus enabling a more accurate estimation. The 

latter techniques inherently involve the study of other metrics of precipitation such as the 

distribution of the size, velocity and kinetic energy of precipitation particles, and the so called radar 

reflectivity (section  3.2).  

Furthermore, the quantitative description of the processes related to the fall, accumulation and 

melting of snow, involve a number of additional metrics, such as the snowfall depth (new snow 

falling), the snowcover depth or snowpack depth (the depth of snow accumulated at a certain point 

at a particular time), the snow density ρs, and the water equivalent of snowfall or snowpack, defined 

as h := h΄ ρs/ρw, where h΄ is the snowfall or the snowcover depth and ρw = 1000 kg/m3 is the liquid 

water density. Typical values of ρs for snowfall range between 0.07-0.15 ρw (e.g. Dingman, 1994) but 

a commonly used value is ρs = 0.1 
ρw = 100 kg/m3. For this value, a snowfall depth of, say, 10 cm, 
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corresponds to a precipitation water equivalent of 10 mm. The density of snowpack is generally 

larger than 0.1 
ρw (because of compaction due to gravity and other mechanisms) and depends on the 

elapsed time and snowpack depth. After a few days it is about 0.2 
ρw, whereas after some months it 

may become about 0.4 
ρw. 

1.4 The enormous variability of precipitation 

The different phases and forms of precipitation, and the different shapes of precipitation particles 

(drops, flakes, hailstones) are just a first indicator of the great diversity of precipitation phenomena. 

At a macroscopic level and in quantitative terms, this diversity is expressed by the enormous 

variability of the precipitation process, in space and time, at all spatial and temporal scales. 

Intermittency is one of the aspects of variability, but even in areas or time periods in which 

precipitation is nonzero, the precipitation depth or average intensity are highly variable.  

Fig. 2 shows the spatial variability of precipitation over the globe in mm/d at climatic scale (average 

for the 30-year period 1979-2008) and at an annual scale (average for the year 2006), based mostly 

on satellite data (see figure caption and section  3.3). While the average precipitation rate over the 

globe and over the specified 30-year period is 2.67 mm/d or 977 mm/year, we observe huge 

differences in different areas of the globe. In some areas, mostly in tropical seas and in equatorial 

areas of South America and Indonesia, this rate exceeds 10 mm/d or 3.65 m/year. On the other 

hand, in large areas in the subtropics, where climate is dominated by semi-permanent anticyclones, 

precipitation is lower than 1 mm/d or 365 mm/year. Significant portions of these areas in Africa, 

Australia, and America are deserts, where the average precipitation is much lower than 1 mm/d. In 

addition, in polar regions, where the available atmospheric moisture content is very low due to low 

temperature (see section  2.1 and Fig. 14) the amounts of precipitation are very small or even zero. 

For example, For example, it is believed that certain dry valleys in the interior of Antarctica have not 

received any precipitation during the last two million years (Uijlenhoet, 2008). 

Fig. 3 depicts the zonal precipitation profile and shows that the climatic precipitation rate at an 

annual basis is highest at a latitude of 5°N, reaching almost 2000 mm/year and has a second peak of 

about 1500 mm/year at 5°S. Around the Tropics of Cancer and Capricorn, at 23.4°N and S, 

respectively, the rainfall rate displays troughs of about 600 mm/year whereas at mid latitudes, 

between 35° and 60° both N and S, rainfall increases again and remains fairly constant, close to the 

global average of 977 mm/year. Then, toward the poles, it decreases to about 100 mm in Antarctica 

and slightly more, 150 mm/year in the Arctic. Fig. 3 also shows monthly climatic profiles for the 

months of January and July. It can be seen that the rainfall conditions for the two months are quite 

different, with the largest differences appearing at about 15°N and S and the smallest at about 30°N 

and S. Below 30° in the Northern Hemisphere, as well as above the Arctic Circle (66.6°), rainfall is 

higher during the summer (July) than during winter (January) but at mid latitudes this relationship is 

reversed. Similar conditions are met in the Southern Hemisphere (where July is winter and January is 

summer). 

In both Fig. 2 and Fig. 3, apart from climatic averages, the specific values for a certain year, namely 

2006, are also shown. We observe that there are differences in the climatic values, manifesting 

temporal variability over the different years. This variability seems to be lower in comparison to the 

spatial variability over the globe, as well as to the seasonal variability reflected in the profiles of 

different months. However, while the spatial variability over the globe and the seasonal variability 
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are well comprehended and roughly explainable in terms of basic physical and astronomical 

knowledge (i.e. solar radiation, relationship of temperature and atmospheric moisture content, 

motion of Earth), in other words they are “regular”, the interannual variability is “irregular”, and 

difficult or even impossible to predict.  

 

 

 

Fig. 2 Precipitation distribution over the globe in mm/d, (upper) at a climatic scale (average for the 30-year 

period 1979-2008) and (lower) at an annual scale (average for year 2006). Data and image generation due to 

the Global Precipitation Climatology Project (GPCP) made available by NASA 

(disc2.nascom.nasa.gov/Giovanni/tovas/rain.GPCP.2.shtml); resolution 2.5°×2.5°. 
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Fig. 3 Zonal precipitation profile: precipitation averaged over all longitudes for different latitudes varying from 

90°N to 90°S (–90°N); data from GPCP.  

Such irregular variability appears also at finer time scales as well as at finer spatial scales. In fact, as 

easily understood from elementary statistics, as the spatial and/or temporal scale becomes finer, the 

variability increases. Fig. 4 demonstrates how the variability of the spatial distribution of rainfall at a 

monthly temporal scale (January 2006) increases when the spatial scale decreases from 2.5°×2.5° 

(upper panel) to 0.25°×0.25° (lower panel). Clearly, the areas of equal rainfall amount (including 

areas of negligible rainfall i.e. < 1 mm/d ≈ 0.04 mm/h), which are smooth in the upper panel become 

rough and erratic in the lower panel. Also the maximum observed rainfall is 21 mm/d (monthly 

amount 651 mm) in the upper panel and 1.2 mm/h (monthly amount 893 mm) in the lower panel.  

Fig. 5 demonstrates the increasing variability with decreasing time scale. Specifically, it depicts how 

the image of the rainfall distribution changes at a daily scale (9 January 2006) and at a sub-daily 

scale, at 3-hourly intervals of the same day. The differences between Fig. 5 and Fig. 4 are prominent. 

Especially at the 3-hourly scale a vast part of the globe receives no rainfall, and the part that receives 

rainfall is irregularly distributed, yet not resembling a totally random pattern. The maximum 

observed rate during this 3-hourly interval is 22 mm/h, about 18 times higher than the maximum 

rate at the monthly scale shown in Fig. 4. The lowest panels of Fig. 5 provide a zoom in over the area 
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lying between 9°N-5°S and 78-92°E, which is located in the Indian ocean south-east of Sri Lanka. This 

area received a large amount of rainfall this particular day, with a rate that is non uniform in space 

and time. 

 

 

 

Fig. 4 Monthly rainfall distribution over the globe in January 2006 in mm/h: (upper) data for resolution 

2.5°×2.5° from GPCP; (lower) data for resolution 0.25°×0.25° from the Tropical Rainfall Measuring Mission 

(TRMM) and Other Rainfall Estimate (3B42 V6) archive, made available by NASA 

(disc2.nascom.nasa.gov/Giovanni/tovas/TRMM_V6.3B42.shtml). 

Fig. 6 to Fig. 8 focus on the temporal variability of precipitation. Fig. 6 depicts the monthly and 

annual variation of the average precipitation over the globe. We can see that at both scales the 

variability is remarkable. Thus, the annual precipitation in the last 30 years has varied between 957 

and 996 mm and obviously much higher variation should have occurred in the past—but data of this 

type covering the entire globe do not exist for earlier periods. However, we can get an idea of earlier 

variation using raingauge data (see section  3.1) at certain locations.  

Perhaps the oldest systematic observations of rainfall quantity in the world were made in Korea in 

the 15th century. Rainfall records for the city of Seoul (37.57°N, 126.97°E, 85 m) exist since 1770 and 

are considered to be reliable (Arakawa, 1956; Wang et al., 2006, 2007). The recorded annual rainfall 

in Seoul is plotted in Fig. 7 along with running climatic averages at 10-year and 30-year time scales. 

The data are now available at a monthly scale from the climatic data base of the Dutch Royal 

Netherlands Meteorological Institute (KNMI), while the monthly data for 1770-1907 appear also in 

Arakawa (1956). Comparisons show that the two time series are generally consistent but not  
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Fig. 5 Spatial rainfall distribution at daily and sub-daily scale: (upper) daily rainfall over the zone between 50°N 

and 50°S on 9 January 2006; (middle) 3-hourly rainfall at 09:00 in the same day; (lower left) zoom in of the 

upper panel for daily rainfall in the Indian ocean south-east of Sri Lanka (shown in figure); (lower right) zoom in 

of the middle panel for 3-hourly rainfall for the same area. Data in mm/h for resolution 0.25°×0.25° from the 

TRMM 3B42 V6 archive. 
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Fig. 6 Evolution of the globally averaged monthly precipitation in the 30-year period 1979-2008, based on data 

from GPCP (see caption of Fig. 2).  

identical. The more modern data series has a few missing values, which generally correspond to high 

values of the older version (and it has been common practice in hydrometeorological data 

processing to delete very high values or outliers, which are regarded suspect, see section  3.1.2). In 

the time series plotted in Fig. 7 these gaps have been filled in using the values of the older time 

series, and a few other missing values have been filled in with the average of the four nearest 

monthly values of the same month (see justification in section  3.1.3). The plot shows that during the 

238 years of record the annual rainfall varied between 634 and 3057 mm and the climatic 30-year 

average varied between 1139 and 1775 mm. These figures indicate a huge variability: the maximum 

observed annual rainfall is almost 5 times greater than the minimum and the maximum 30-year 

climatic rainfall is 55% higher than the minimum. Such observed changes underscore the ever-

changing character of climate and render future changes of precipitation predicted by climate 

modellers (which typically vary within 10-20%; compare Fig. 10.12, upper left panel, in Meehl et al., 

2007, with Fig. 2 herein) to be unrealistically low and too unsafe to support planning.  

Fig. 7 also includes a plot of another long time series, for the Charleston City, USA (32.79°N, 

79.94°W, 3 m); the record starts in 1835. The time series is also available from the KNMI data base 

and a few missing monthly values have been filled in by the average of the four nearest monthly 

values of the same month. Here the annual rainfall varied between 602 and 1992 mm (3.3 times 

higher than minimum) and the climatic 30-year average varied between 1135 and 1425 mm (25% 

higher than minimum). 
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Fig. 7 Annual precipitation time series in two of the stations with the longest records worldwide: (upper) Seoul, 

Korea; (lower) Charleston City, USA. Data from the data base of the Dutch Royal Netherlands Meteorological 

Institute (KNMI; climexp.knmi.nl) and additional information as shown in text. 

Finally, Fig. 8 depicts the time series of a storm measured at unusually high temporal resolution, that 

is 10 seconds. This storm, with duration 96 790 s or about 27 h starting at 1990-02-12T17:03:39, is 

one of several storms that were measured at the University of Iowa using devices that support high 

sampling rates (Georgakakos et al., 1994). Fig. 8 also includes plots at 5-min and hourly time scales. 

The minimum intensity was virtually zero at all three scales, whereas the maximum rainfall intensity 

was 118.7, 38.9 and 18.1 mm/h at time scales of 10 s, 5 min and 1 h, respectively. As the mean 

intensity during the storm is 3.89 mm/h, these maximum values are 30, 10, and 4.6 times higher 
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than the mean. This example highlights the spectacular variability of rainfall, particularly at fine time 

scales (see also Uijlenhoet and Sempere-Torres, 2006). As the total rainfall amount of this storm 

event only slightly exceeds 100 mm, it could be thought of as a rather modest event. Storms with 

amounts much higher than this are often recorded even in semi-dry climates and, obviously, the 

variability of rainfall intensity during such storms is even higher.  
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Fig. 8 Time series of a storm in Iowa, USA measured at the University of Iowa with temporal resolution of 10 

seconds (Georgakakos et al., 1994); time zero corresponds to 1990-02-12T17:03:39.  

1.5 Probability and stochastic processes as tools for 

understanding and modelling precipitation 

The high variability and the rough and irregular patterns in observed fields and time series are much 

more prominent in precipitation than in other meteorological variables such as atmospheric 

pressure or temperature. High variability implies high uncertainty and, unavoidably, this affects 

predictability in deterministic terms. Considering weather prediction as an example, it is well known 

that the forecasts of atmospheric pressure and temperature are much more reliable than those of 

precipitation. Numerical weather prediction (NWP) uses current weather conditions as input to 

mathematical models of the atmosphere, which solve the flow (Navier-Stokes) equations, the 

thermodynamic energy equation, the state equation of gases, and the equation of conservation of 

water vapour, over a grid covering the entire atmosphere. The processes related to cloud formation 

and precipitation (see section  2.2) are less accurately represented in these models. While the 

continuous improvement of NWP models resulted in a considerable reduction of forecast errors on 

pressure and temperature, the improvement in the so-called quantitative precipitation forecast 

(QPF) has been slower (Olson et al., 1995). Further, although the advances in computing 

infrastructure permitted the increase in model resolution that leads generally to an improvement of 

precipitation forecasts, recently many authors have highlighted the limitations of such an approach 
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(e.g. Mass et al., 2002; Lagouvardos et al., 2003; Kotroni and Lagouvardos, 2004). The major 

advancement in QPF in the last decades was the abandonment of the pure deterministic approach, 

which seeks a unique prediction, and the adoption of a more probabilistic approach to precipitation 

forecast, based on earlier ideas of Epstein (1969) and Leith (1974). In this approach, known as 

ensemble forecasting, the same model produces many forecasts. To produce these forecasts, 

perturbations are introduced, e.g. in the initial conditions, and, because of the nonlinear dynamics 

with sensitive dependence on the initial conditions (e.g. Lorenz, 1963), these perturbations are 

magnified in time thus giving very different precipitation amounts in a lead time of one or more 

days. The different model outputs can then be treated in a probabilistic manner, thus assigning 

probabilities to rainfall occurrence as well as to the exceedence of a specified rainfall threshold. In 

this manner, although the model uses deterministic dynamics, the entire framework is of the Monte 

Carlo or stochastic type.  

This method is satisfactory for a time horizon of forecast of a few days. In hydrology, this time 

horizon is relevant in real-time flood forecasting. However, in hydrological design, horizons as long 

as 50 or 100 years (the lifetimes of engineering constructions) are typically used. For such long 

horizons the use of deterministic dynamics and of the related laborious models would not be of any 

help. However, a probabilistic approach is still meaningful—in fact the only effective approach—and, 

in this case, it can be formulated irrespectively of the dynamics. Rather, the probabilistic approach 

should be based, in this case, on historical records of precipitation, such as those displayed in Fig. 7 

and Fig. 8. The reasoning behind neglecting the deterministic dynamics is that, beyond a certain time 

horizon (which in precipitation is of the order of several days) even the simplest nonlinear systems 

tend to a statistical equilibrium state. In this state the probability distribution of the system 

properties, conditioned on the initial state, is practically equal to the marginal (i.e. unconditional) 

probability distribution of the same properties (Koutsoyiannis, 2009). This equilibrium, which is 

different from the typical thermodynamic equilibrium, corresponds to the maximization of the 

entropy of the vector of random variables defining the system state. 

1.5.1 Basic concepts of probability 

Probability is thus not only a mathematical tool to model precipitation uncertainty, but also a 

concept for understanding the behaviour of precipitation. Probabilistic thinking provides insights in 

to phenomena and their mathematical descriptions, which may not be achievable in deterministic 

terms. It should be recalled that, according to the Kolmogorov (1933) system, probability is a 

normalized measure, that is,  a function P that maps sets (areas where unknown quantities lie) to 

real numbers (in the interval [0, 1]). Furthermore, a random variable x is a single-valued function of 

the set of all elementary events (so that to each event it maps a real number) and is associated with 

a probability distribution function. The latter is defined as 

 Fx(x) := P{x ≤ x} (3) 

where x is any real number, which should be distinguished from the random variable x.* Fx(x) is a non 

decreasing function of x with the obvious properties Fx(−∞) = 0 and Fx(+∞) = 1. For continuous 

                                                           

*
 Distinction of random variables from their values is usually done by denoting them with upper case and lower 

case letters, respectively. This convention has several problems—e.g., the Latin x and the Greek χ, if put in 
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random variables (as is for instance the representation of a nonzero rainfall depth), the probability 

that a random variable x would take any particular value x is P{x = x} = 0. Thus, the question whether 

one particular value (say x1 = 10 mm, assuming that x denotes daily rainfall at a location) is more 

probable than another value (say x2 = 10 m, which intuitively seems extremely improbable) cannot 

be answered in terms of the probability function P, as all particular values have probability equal to 

zero. The derivative of F, that is 

 fx(x) := dFx(x)/dx (4) 

termed probability density function, can provide this answer, as the quantity fx(x) dx is the 

probability that rainfall will lie in an interval of length dx around x. Apparently then the ratio fx(x1) / 

fx(x2) equals the ratio of the probabilities at points x1 and x2.  

These rather simple notions allow quantification of uncertainty and enable producing a different 

type of predictions, which offer a concrete foundation of rational decisions for the design and 

management of water resources projects. This quantification is sometimes (mostly in Bayesian 

statistics) referred to as probabilization of uncertainty that is meant to be the axiomatic reduction 

from the notion of unknown to the notion of a random variable (Robert, 2007). 

1.5.2 Stochastic processes 

In the study of rainfall variation in time, the notion and the theory of stochastic processes provides 

the necessary theoretical framework. A stochastic process is defined as an arbitrarily (usually 

infinitely) large family of random variables x(t) (Papoulis, 1991). In most hydrological applications 

time is discretized using an appropriate time step δ; for integer i the average of the continuous time 

process x(t) from t = (i – 1)δ to t = i δ, is usually denoted xi and forms a discrete time stochastic 

process. The index set of the stochastic process (i.e. the set from which the index t or i takes its 

values) can also be a vector space, rather than the real line or the set of integers. This is the case, for 

instance, when we assign a random variable (e.g. rainfall depth) to each geographical location (a two 

dimensional vector space) or to each location and time instance (a three-dimensional vector space). 

Stochastic processes with a multidimensional index set are also known as random fields.  

A realization x(t) (or xi) of a stochastic process x(t) (or xi), which is a regular (numerical) function of 

the time t (or a numerical sequence in time i) is known as a sample function. Typically, a realization is 

observed at countable time instances (and not in continuous time, even if the process is of 

continuous-time type). This sequence of observations is also referred to as a time series. Clearly 

then, a time series is a sequence of numbers, whereas a stochastic process is a family of random 

variables.†  

The distribution and the density functions of the random variable xi, that is 

 Fi(x) := P{xi ≤ x},  fi(x) := dFi(x)/dx (5) 

                                                                                                                                                                                     

upper case, are the same symbol X—other texts do not distinguish the two at all, thus creating another type of 

ambiguity. Here we follow a different convention, in which random variables are underscored and their values 

are not. 
†
 Unfortunately, a large body of literature does not make this distinction and confuses stochastic processes 

with time series. 
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are called, respectively first order distribution function and first order density function of the process. 

Likewise, the second order distribution function is Fi1i2
(x1, x2) = P{xi1

 ≤ x1, xi2
 ≤ x2} and this can be 

generalized to define the nth
 order distribution function. It should be recalled that the expected value 

of a function g of one, two or more random variables is the integral of g multiplied by the density f, 

that is 

 E[g(xi)] := ⌡⌠
−∞

∞

 g(x) fi(x) dx,  E[g(xi1
, xi2

)] = ⌡⌠
−∞

∞

  ⌡⌠
−∞

∞

  g(x1, x2) fi1i2
(x1, x2) dx1 dx2 (6) 

The use of square brackets in E[ ] and the random variables xi rather than their values x signifies the 

fact that the expected value is not a function of the real number x; rather it depends solely on the 

distribution function associated with the random variable xi. Of particular interest are the cases 

where g(xi) = xi, whence E[xi] =: μi is the mean value of xi, and g(xi1
, xi2

) = (xi1
 – μi1

) (xi2
 – μi2

), whence 

E[(xi1
 – μi1

) (xi2
 – μi2

)] =: Ci1i2
 is the process autocovariance, that is, the covariance of the random 

variables xi1
 and xi2

. The process variance (the variance of the variable xi), is a special case of the 

later, that is, Var[xi] = Cii, whereas the standard deviation is the square root of the latter, that is, σi := 

Cii. Consequently, the process autocorrelation (the correlation coefficient of the random variables 

xi1
 and xi2

) is ρi1i2
 := Ci1i2

 / (σi1
 σi2

). 

1.5.3 Stationarity 

As implied by the above notation, in the general setting, the statistics of a stochastic process, such as 

the mean and autocovariance, depend on time i and thus vary with time. However, the case where 

these statistical properties remain constant in time is the most interesting. A process with this 

property is referred to as a stationary process. More precisely, a process is called (strict-sense) 

stationary if all its statistical properties are invariant to a shift of time origin. That is, the distribution 

function of any order of xi + j is identical to that of xi. A process is called wide-sense stationary if its 

mean is constant and its autocovariance depends only on time differences (lags), that is 

 E[Xi] = μ,    Ε[(Xi + j – μ) (Xi – μ)] = Cj (7) 

Evidently, the standard deviation is constant too, i.e., σi = σ, and the autocorrelation is a function of 

the time lag only, i.e., ρi + j, i = ρj. A strict-sense stationary process is also wide-sense stationary but 

the reverse is not true. 

A process that is not stationary is called nonstationary. In a nonstationary process one or more 

statistical properties depend on time. A typical case of a nonstationary process is the cumulative 

rainfall depth whose mean obviously increases with time. For instance, let us assume that the 

instantaneous rainfall intensity i(t) at a geographical location and period of the year is a stationary 

process, with a mean μ. Let us further denote by h(t) the rainfall depth collected in a large container 

(a cumulative raingauge) at time t and assume that at the time origin, t = 0, the container is empty. 

Clearly E[h(t)] = μ t. Thus h(t) is a nonstationary process.  

It should be stressed that stationarity and nonstationarity are properties of a stochastic process, not 

of a sample function or time series. There is some confusion in the literature about this, as there are 
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several studies that refer to a time series as stationary or nonstationary. As a general rule, to 

characterise a process nonstationary, it suffices to show that some statistical property is a 

deterministic function of time (as in the above example of the cumulative rainfall), but this cannot be 

directly inferred merely from a time series. To understand this, let us consider the time series of 

annual rainfall in Seoul plotted in the upper panel of Fig. 7. Misled by the changing regime of 

precipitation at climatic scale, as manifested in the plot of the 30-year average, it would be tempting 

to note (a) an increasing trend in the period 1770-90; (b) a constant climate with high precipitation 

during the period 1790-1870; (c) a decreasing trend between 1870-1900; and (d) a constant climate 

with low precipitation thereafter. It is then a matter of applying a fitting algorithm to determine, say, 

a broken-line type of function to the time series, which would be called a “deterministic function of 

time”. The conclusion would then be that the time series is nonstationary. However, this is a wrong 

ex post argument, which interprets the long-term variability of the processes as a deterministic 

function. Had the function been indeed deterministic, it would also apply to future times, which 

obviously is not the case. Comparison with the previous example (cumulative rainfall), where the 

deterministic function E[x(t)] = μ t was obtained by theoretical reasoning (deduction) rather than by 

inspection of the data, demonstrates the real basis of nonstationarity. Koutsoyiannis (2006b) has 

provided a more detailed study of this issue. 

Stochastic processes describing periodic phenomena, such as those affected by the annual cycle of 

the Earth, are clearly nonstationary. For instance, the daily rainfall at a mid-latitude location could 

not be regarded as a stationary process. Rather, a special type of a nonstationary process, whose 

properties depend on time in a periodical manner (are periodic functions of time) should be used. 

Such processes are called cyclostationary processes.  

1.5.4 Ergodicity  

The concept of ergodicity (from the Greek words ergon – work – and odos – path) is central to the 

problem of determining the distribution function of a process from a single sample function (time 

series). A stationary stochastic process is ergodic if any statistical property can be determined from a 

sample function. Given that, in practice, the statistical properties are determined as time averages of 

time series, the above statement can be formulated alternatively - a stationary stochastic process is 

ergodic if time averages equal ensemble averages (i.e. expected values). For example, a stationary 

stochastic process is mean ergodic if  

 E[xi] := limN→∞ 
1

N
 ∑
i = 1

N

 xi (8) 

The left-hand side in the above equation represents the ensemble average whereas the right-hand 

side represents the time average, for the limiting case of infinite time. While the left-hand side is a 

parameter, rather than a random variable, the right-hand side is a random variable (as a sum of 

random variables). Equating a parameter with a random variable implies that the random variable 

has zero variance. This is precisely the condition that makes a process ergodic, a condition that does 

not hold true for every stochastic process. 
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1.5.5 Some characteristic stochastic properties of precipitation 

It has been widely thought that rainfall exhibits some autocorrelation (or time dependence) if the 

time scale of study is daily or sub-daily, but this dependence vanishes at larger time scales, such as 

monthly or yearly. Thus, for time scales monthly and above, rainfall data series have been 

traditionally treated as independent samples. Mathematically, such a perception corresponds to a 

Markovian dependence at fine time scales, in which the autocorrelation decreases rapidly with time 

lag in an exponential manner, that is  

 ρj = ρj (9) 

where ρ := ρ1. Then for a large lag j, or for a large scale of aggregation and even for the smallest lag 

(one), the autocorrelation is virtually zero (e.g. Koutsoyiannis, 2002). If xi denotes the stochastic 

process at an initial time scale, which is designated as scale 1, then the averaged process at an 

aggregated time scale k = 2, 3, ..., is  

 x
(k)
i  := 

x(i – 1)k + 1 + … + xi k

k
 (10) 

(with x
(1)
i  ≡ xi). Let σ(k) be the standard deviation at scale k. In processes xi independent of time, σ(k) 

decreases with scale according to the well known classical statistical law of inverse square-root, that 

is 

 σ
(k) = 

σ

k
 (11) 

However, this law hardly holds in geophysical time series including rainfall time series, whatever the 

scale is. This can be verified based on the examples presented in section  1.4. A more plausible law is 

expressed by the elementary scaling (power-law) property  

 σ
(k) = 

σ

k
1 – H 

 (12) 

where H is the so called Hurst exponent, after Hurst (1951) who first studied this type of behaviour 

in geophysical time series. Earlier, Kolmogorov (1940), when studying turbulence, had proposed a 

mathematical model to describe this behaviour. The behaviour has been known by several names 

including the Hurst phenomenon, long-term persistence and long range dependence, and a simple 

stochastic model that reproduces it is known as a simple scaling stochastic model or fractional 

Gaussian noise (due to Mandelbrot and van Ness, 1968). Here the behaviour is referred to as the 

Hurst-Kolmogorov (HK) behaviour or HK (stochastic) dynamics and the model as the HK model.  

This behaviour implies that the autocorrelation decreases slowly, i.e., according to a power-type 

function, with lag j:  

 ρ
(k)
i  = ρj = (1/2) [(|j + 1|)2H + (|j – 1|)2H ] – |j|2H ≈ H (2H −1) j2H−2 (13) 
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so that independence virtually never holds, unless H = 0.5, a value which reinstates classical statistics 

including the law in equation (11). Most often, natural processes including rainfall are positively 

correlated  and H varies in the range (0.5, 1).  

The above framework is rather simple and allows easy exploration of data to detect whether they 

indicate consistence with classical statistics or with the HK behaviour. A simple exploration tool is a 

double logarithmic plot of the estimates of standard deviation σ(k) vs. scale k, which is known as a 

climacogram.‡ In such a plot, the classical law and the HK law are manifested by a linear 

arrangement of points with slopes –0.5 and H – 1, respectively. We must bare in mind, however, 

that a consequence of the HK law in equation (12) is that the classical estimator of the variance 

 s
2 = 

1

n – 1
 ∑
i = 1

n

 (xi – x–)2 (14) 

where n is the sample size, x– ≡ x
(n)
1  is the estimator of the mean, and s the estimator of standard 

deviation, implies negative bias if there is temporal dependence. The bias becomes very high for HK 

processes with H approaching 1. Apparently then, s could be a highly biased estimator of σ; an 

approximately unbiased estimator is (Koutsoyiannis, 2003a; Koutsoyiannis and Montanari, 2007): 

 s
≈

 := 
n΄

n΄ – 1
 s (15) 

where n΄ is the “equivalent” (or “effective”) sample size, i.e., the sample size that in the framework 

of classical statistics would lead to the same uncertainty (in the estimation of μ by x– ≡ x
(n)
1 ) as yields 

an HK series with sample size n. For an HK process, n΄ is related to n by  

 n΄ = n2(1 – H) (16) 

It can be seen that n΄ can be very small even for high n if H is high, and thus the correcting factor 

n΄/ (n΄ – 1) in equation (15) can be very large (see Koutsoyiannis and Montanari, 2007).  

Returning to the time series of globally averaged monthly precipitation in the 30-year period 1979-

2008, which has been discussed earlier and is displayed in Fig. 6, we may now study its statistical 

properties for several time scales. As the precipitation amounts are averaged over the entire globe, 

the effect of seasonality is diminished and the time series can be modelled by a stationary process 

rather than a cyclostationary one. Fig. 9 depicts the climacogram, that is, a logarithmic plot of 

standard deviation vs. scale. Empirical estimates of standard deviations have been calculated using 

both the classical estimator in equation (14) and the HK estimator in equation (15). Theoretical 

curves resulting from the classical statistical model (assuming independence), the Markovian model 

and the HK model have also been plotted. For the Markovian model, the lag one autocorrelation 

coefficient, estimated from the monthly data, is ρ = 0.256 and for the HK model the estimate of the 

Hurst coefficient is H = 0.70. This can be obtained readily from the slope of the straight line fitted to 

                                                           

‡
 Climacogram < Greek Κλιμακόγραμμα < [climax (κλιμαξ) = scale] + [gramma (γράμμα) = written]. 
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the group of empirical points in Fig. 9, which should be H – 1. Here a slightly modified algorithm from 

Koutsoyiannis (2003a) has been used for the estimation of H. Overall, Fig. 9 clearly demonstrates 

that the empirical points are inconsistent with the classical and Markovian models and justify an 

assumption of HK behaviour. 
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Fig. 9 Climacogram of the time series of globally averaged monthly precipitation in the 30-year period 1979-

2008 shown in Fig. 6. The estimate of the Hurst coefficient for the HK model is H = 0.70. 

Similar plots have been constructed, and are shown in Fig. 10, for the annual precipitation time 

series from Seoul, Korea and Charleston City, USA, displayed in Fig. 7. Again the empirical evidence 

from data precludes the applicability of the classical statistical model and favours the HK statistics. 

An additional plot for the ten-second precipitation time series in Iowa, USA, displayed in Fig. 8, is 

depicted in Fig. 11. Here the Hurst coefficient is very high, H = 0.96. The difference between the 

empirical points based on classical statistics on the one hand and the HK statistics on the other hand 

is quite impressive. Apparently, the classical model is completely inappropriate for the rainfall 

process.  

The HK stochastic processes can be readily extended in a two-dimensional (2D) setting (or even 

multidimensional). The 2D version of equation (12) is 

 σ
(k) = 

σ

k
2 – 2H 

 (17) 
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Fig. 10 Climacogram of the annual precipitation time series at: (upper) Seoul, Korea and (lower) Charleston 

City, USA, which are shown in Fig. 7; the estimated Hurst coefficients are 0.76 and 0.74, respectively. 
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Fig. 11 Climacogram of the ten-second precipitation time series in Iowa, USA displayed in Fig. 8; the estimated 

Hurst coefficient is 0.96.  
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Fig. 12 Climacogram of the spatial daily rainfall over the area 9°N-5°S and 78-92°E (Indian ocean south-east of 

Sri Lanka) on 9 January 2006, as shown in the lower-left panel of Fig. 5; the estimated Hurst coefficient is 0.94.  
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This can be obtained by substituting k
2 for k in equation (12). Equations (15) and (16) still hold 

provided that n is the number of points, which is inversely proportional to k2. Fig. 12 demonstrates 

this behaviour by means of a climacogram for the spatial daily rainfall over the area 9°N-5°S and 78-

92°E (Indian ocean south-east of Sri Lanka) on 9 January 2006, displayed in the lower-left panel of 

Fig. 5. Here the estimated Hurst coefficient is again very high, H = 0.94. As in all previous cases the 

classical model is completely inappropriate, while the HK model seems reasonable for scales ≥ 4, 

which correspond to a resolution of 1°×1° and beyond.  

Thus, the evidence presented using several examples of different spatial and temporal scales 

indicates that the HK dynamics is consistent with the nature of rainfall. This dynamics appear as a 

scaling behaviour, either in time or in space, which is either full, applicable to the entire range of 

scales, or asymptotic, applicable to large scales. Both these scaling behaviours are manifested as 

power laws of the standard deviation vs. temporal or spatial scale and of the autocorrelation vs. lag. 

There exists another type of scaling behaviour in precipitation, the scaling in state, which is 

sometimes confused with the other two scaling behaviours, but is fundamentally different. Scaling in 

state is a property of the marginal distribution function of rainfall (it has no relation to the 

dependence structure of the process unlike other types of scaling) and is expressed by power laws of 

the tails of (a) the probability density function f(x), (b) the survival function (or exceedence 

probability) F*(x) := P{x > x} = 1 – F(x) and (c) the return period T = δ / F*(x) where δ is the length of 

the time scale examined. These scaling properties are expressed as  

 x ∝ T κ,   F*(x) ∝ x –1/κ,    f(x) ∝ x –1 – 1/κ (18) 

and are equivalent to each other. All these are asymptotic, i.e., they hold only for large values of x 

or, in other words for the distribution tails. Such tails are known by several names, such as long, 

heavy, strong, power-type, overexponential, algebraic, or Pareto tails. The latter name comes from 

the Pareto distribution, which in its simplest form is given in equation (18), although its generalized 

form is applicable to rainfall (see section  5.2). As this is an asymptotic behaviour, long records are 

needed to observe it. Fig. 13 shows a logarithmic plot of the empirical distribution (expressed in 

terms of return period T) of a large data set of daily rainfall. This data set was formed from records 

of 168 stations worldwide, each of which contained 100 years of data or more (Koutsoyiannis, 

2004b). For each station with n years of record, n annual maximum values of daily rainfall were 

extracted. These values were standardized by their mean and merged in one sample of length 

17 922 station-years. From the theoretical distributions, also plotted in the figure, it is observed that 

the Pareto distribution (whose right tail appears as a straight line in the logarithmic plot; see section 

 5.2) with κ = 0.15 provides the best fit, thus confirming the applicability of asymptotic scaling in state 

and the inappropriateness of the exponential-type tail. This has severe consequences particularly in 

hydrological design, as distributions with exponential tails have been most common in hydrological 

practice, whereas it is apparent that the power-type tails are more consistent with reality. As shown 

in Fig. 13 the difference between the two types can be substantial. 

Koutsoyiannis (2005a,b) produced the foresaid different types of scaling from the principle of 

maximum entropy. As entropy is a measure of uncertainty, the applicability of the principle of 

maximum entropy and its consistence with observed natural behaviours characterizing the 

precipitation process underscores the dominance of uncertainty in precipitation.  
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Fig. 13 Logarithmic plot of rescaled daily rainfall depth vs. return period: empirical estimates from a unified 

sample over threshold, formed using rainfall data from 168 stations worldwide (17922 station-years). The 

unified sample was rescaled by the mean of each station, and fitted using a Pareto and an exponential 

distribution models (adapted from Koutsoyiannis, 2004b). 

2 Physical and meteorological framework  

Atmospheric air is a heterogeneous mixture of gases, also containing suspended particles in liquid 

and solid phase. The most abundant gases are the Nitrogen (N2) and Oxygen (O2) that account for 

about 78% and 21%, respectively, by volume of the atmospheric permanent gases, followed by 

Argon (Ar) and traces of other noble gases. Their concentrations are almost constant worldwide and 

up to an altitude of about 90 km. Water vapour (H2O) appears in relatively low concentrations, 

which are highly variable. However, water vapour is very important for the energy exchange on 

earth (it accounts for 65% of the radiative transfer of energy in the atmosphere; Hemond and 

Fechner-Levy, 2000), as well as the mass transfer processes in the hydrological cycle. Under certain 

conditions (i.e. pressure and temperature) water vapour can transform to droplets or ice crystals 

with subsequent release of latent heat (see sections  2.1 and  2.2). More generally, the water vapour 

content of atmospheric air affects its density and it is of central importance in atmospheric 

thermodynamics (section  2.1). The varying content and high importance of water vapour in 

precipitation processes and thermodynamics, has led to the study of atmospheric air as a mixture of 

two (ideal) gases: dry air and water vapour. This mixture is usually referred to as moist air and has 

thermodynamic properties determined by its constituents (e.g. Rogers and Yau, 1996; Cotton and 

Anthes, 1989).  

The particles of solid and liquid material suspended in air are called aerosols. Common examples of 

aerosols are water droplets and ice crystals (called hydrometeors), smoke, sea salt (NaCl), dust and 

pollen. The size distribution of solid aerosols depends strongly on their location. For example, the 
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size spectrum of aerosols over land is narrow with high concentrations of small particles (e.g. 

kaolinite, dust, pollen etc.), whereas the size spectrum of aerosols over sea is wider with small 

concentrations of larger particles (e.g. sea salt; e.g. Ryan et al., 1972). Existence of aerosols in the 

atmosphere is of major importance, since a select group of aerosols called hydroscopic nuclei is 

crucial for the nucleation of liquid water and initiation of rain (e.g. Brock, 1972, and section  2.2 

below).  

When moist air is cooled (i.e. below its dew point; see section  2.1), an amount of water vapour 

condenses and a cloud forms, but precipitation may or may not occur. Initiation of rain requires the 

formation of hydrometeors (i.e. water droplets and ice crystals) of precipitable size (e.g., Gunn and 

Kinzer, 1949; Twomey, 1964, 1966; Brock, 1972). Formation and growth of these particles are 

governed by processes that take place at scales comparable to their size (μm-mm). The latter 

processes form the core of cloud microphysics, whereas large scale processes related to 

thermodynamics of moist air and motion of air masses form the core of cloud dynamics. Importantly, 

precipitation is the combined effect of both large- and micro-scale processes, and both processes 

are equally important and necessary for precipitation to occur. 

2.1 Basics of moist air thermodynamics  

In a parcel of moist air at temperature T with volume V and mass M = Md + Mv, with the two 

components denoting mass of dry air and water vapour, respectively, the density is ρ = M/V and the 

concentration of water vapour, known as specific humidity, is q := Mv/M. The quantity r := Mv/Md = 

q/(1– q) is usually referred to as the mixing ratio. The total pressure of the moist air in the parcel, p 

(the atmospheric pressure), equals the sum of the partial pressure of dry air pd and that of water 

vapour e (i.e. p = pd + e). Specific humidity and vapour pressure are interrelated through 

 q = 
ε e

 p – (1 – ε) e
 (19) 

where ε = 0.622 is the ratio of molar masses of water vapour and dry air. Air cannot hold an 

arbitrarily high quantity of vapour. Rather, there is an upper limit of the vapour pressure e*, called 

the saturation vapour pressure, which depends on the temperature T and is given by the Clausius-

Clapeyron equation. A useful approximation to this equation is: 

 e
*(T) = 6.11 exp







17.67T

T + 237.3
  (20) 

where e
* is in hPa and T is in °C. Consequently, from equations (19) and (20) we can calculate the 

saturation specific humidity q*, which is a function of T, and expresses the water vapour holding 

capacity of air. As shown in Fig. 14, this capacity changes drastically, almost exponentially, with 

temperature, so that a change of temperature from –40 to 40°C increases this capacity by 2.5 orders 

of magnitude.  

The ratio of the actual to saturation vapour pressure, i.e., e/e
* =: U, called the relative humidity, is 

normally smaller than 1. When an air parcel cools, while e remains constant, e* decreases and hence 

U increases, up to the saturation value 1 or 100%. The temperature Td at which saturation occurs is 

called the dew point temperature and is calculated from equation (20) by setting e
*(Td) = e. 

Therefore, cooling of the air parcel below the dew point temperature will result in condensation, or 
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transformation of the excess water vapour into liquid water in the form of droplets. During this 

change of phase the relative humidity remains 100%. Condensation releases heat at a fairly constant 

rate (L ≈ 2.5 MJ/kg); this rate equals that of evaporation of water at a constant temperature and is 

thus called latent heat.  
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Fig. 14. Saturation specific humidity as a function of air temperature. 

For an air parcel to ascend and expand spontaneously, so that condensation and cloud formation 

can occur, the ambient (atmospheric) temperature gradient γ := –dT/dz, where z denotes altitude, 

also known as lapse rate, must be high (otherwise an uplifted air parcel will sink again). While the 

parcel ascends and expands adiabatically (i.e. in a way that no heat transfer takes place between the 

air parcel and its ambient air), its own lapse rate is γd = 9.8°C/km if the expansion is dry adiabatic (i.e. 

if it takes place without condensation of water vapor) and somewhat smaller, γ*, if the expansion is 

moist adiabatic (i.e., if the temperature has fallen below dew point, so that some of the water 

vapour in the parcel condenses to liquid form). The gradient γ
* is not constant but varies with 

temperature T and air pressure p so that γ* = 4°C/km for T = 25°C and p = 1000 hPa, whereas γ* = 

9°C/km for T = –25°C and p = 1000 hPa; an average value is γ* = 6.5°C/km (Koutsoyiannis, 2000a; see 

also Wallace and Hobbs, 1977). When the ambient lapse rate γ is smaller than γ* the atmosphere is 

stable, and no spontaneous lift occurs and no clouds are formed. When γ > γd the atmosphere is 

unstable and favours air lift and formation of clouds. The case γ* < γ < γd is known as conditional 

instability and it serves as an important mechanism for mesoscale precipitation processes (see 

sections  2.4 and  2.5). 

2.2 Formation and growth of precipitation particles 

The Clausius-Clapeyron equation describes the equilibrium condition of a thermodynamic system 

consisting of bulk water and vapour. A state out of the equilibrium, in which e > e* (U > 1) is possible, 

but thermodynamically unstable, and is called supersaturation. Detailed study of the transition of 

water vapour to liquid or ice at or above saturation is associated with certain free energy barriers. An 



26 Treatise on Water Science 

example of such an energy barrier is the dynamic energy associated with the surface tension, σ, of a 

water droplet. For a spherical droplet, σ is proportional to the pressure of water within the droplet p 

and inversely proportional to its radius r (i.e. σ = p/2r). This means that a high vapour pressure is 

needed for a very small droplet to be maintained and not evaporate. In essence, the free energy 

barrier of surface tension makes droplet formation solely by condensation of water vapour (a 

process usually referred to as homogeneous nucleation) almost impossible in nature. However, if the 

surface tension barrier is bypassed, common supersaturations of the order of 1-2% (i.e. U = 1.01-

1.02) are sufficient for water vapour to diffuse toward the surface of the droplet. The rate of 

diffusional growth is proportional to the supersaturation U – 1 of the ambient air, and inversely 

proportional to the radius r of the droplet, i.e., dr/dt ∝ (U – 1)/r (Mason, 1971; Rogers and Yau, 

1996). 

While homogeneous nucleation requires large supersaturations, formation of droplets is drastically 

facilitated by particulated matter of the size of micrometres or lower, the aerosols, some of which, 

called condensation nuclei, are hydrophilic and serve as centres for droplet condensation (Brock, 

1972; Slinn, 1975; Hobbs et al., 1985). This process is usually referred to as heterogeneous 

nucleation and it is almost exclusively the process that governs water vapour condensation in the 

atmosphere (Houze, 1993).  

When the temperature in the cloud drops below the freezing point, water droplets are said to be 

supercooled, and they may or may not freeze. For pure water droplets, homogeneous freezing does 

not occur until the temperature drops below –40oC (Rogers and Yau, 1996). However, the presence 

of certain condensation nuclei, called ice nuclei, may allow freezing of water droplets at 

temperatures a few degrees below 0oC. These nuclei are particles of the size of micrometres or 

lower that form strong bonds with water and closely match the crystallic structure of ice. Different 

particles serve as condensation nuclei at different subfreezing temperatures. For example, silver 

iodide (AgI) serves as an ice nucleator at –4oC and kaolinite at –9oC (e.g. Houghton, 1985).  

Evidently, a cloud is an assembly of tiny droplets with usually met concentrations of several hundred 

per cubic centimetre, and radii of several micrometres. This structure is very stable and the only 

dominant process is vapour diffusion, which accounts for the size growth evolution of the whole 

droplet population (Telford and Chai, 1980; Telford and Wagner, 1981). Precipitation develops when 

the cloud population becomes unstable and some droplets grow faster relative to others.  

In general, two main mechanisms account for the cloud microstructure to become unstable. The first 

mechanism is the collision and coalescence (i.e. sticking) of larger (and faster moving) collector drops 

with smaller (and slower moving) collected droplets. This mechanism is particularly important for 

precipitation development in warm clouds (i.e. at temperatures in excess of 0oC; see e.g. Houze, 

1993) and, for a long time, it has formed an active research area in cloud and precipitation physics 

(e.g. Langmuir, 1948; Bowen, 1950; Telford, 1955; Scott, 1968, 1972; Long, 1971; Drake, 1972a,b; 

Gillespie, 1972, 1975; Robertson, 1974; Berry and Reinhardt, 1974a,b; Vohl et al., 1999; Pinsky et al., 

1999, 2000; Pinsky and Khain, 2004; and review in Testik and Barros, 2007). Its significance for 

precipitation processes depends considerably on the droplet size spectra, with larger effectiveness 

for wider spectra with small concentrations of larger particles (Berry and Reinhardt, 1974a,b).  

The second mechanism is related to interaction between water droplets and ice crystals, and is 

limited to clouds with tops that extend to subfreezing temperatures (i.e. cold clouds). In particular, 
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when an ice crystal develops in the presence of a large number of supercooled droplets, the 

situation becomes immediately unstable and the ice crystal grows due to diffusion of water vapour 

from the droplets toward the crystal. This is due to the fact that the equilibrium vapour pressure 

over ice is less than that over water at the same subfreezing temperature. Thus, the ice crystal grows 

by diffusion of water vapour and the supercooled droplets evaporate to compensate for this. The 

transfer rate of water vapour depends on the difference between the equilibrium vapour pressure of 

water and ice, a quantity that becomes sufficiently large at about –15oC (Uijlenhoet, 2008). The 

latter process is called the Bergeron-Findeisen mechanism after the scientists who first studied it 

(Bergeron, 1935; Findeisen, 1938).  

Once the ice crystals have grown by vapour diffusion to sizes sufficiently large for gravitational 

settling to dominate, they start falling and colliding with their ambient droplets and ice crystals, a 

process usually referred to as accretional growth. In the first case (i.e. when ice crystals collide with 

droplets) graupel or hail may form, whereas in the second case snowflakes are likely to form.  

As the frozen particles fall, it is possible to enter layers with temperature higher than 0oC and start 

melting. If the particles have relatively small terminal velocities (or equivalently small size; see 

section  2.3), they may reach the ground as raindrops indistinguishable from those formed by 

coalescence. Alternatively, in cold weather or when large hailstones are formed, the precipitation 

particles may reach the ground unmelted.  

Additional discussion on the mechanisms of formation and growth of precipitation particles, and the 

potential human intervention on the mechanisms by technological means are discussed in Chapter 

79, “Abstraction of atmospheric humidity” of the present volume. 

 

2.3 Properties of precipitation particles  

2.3.1 Terminal velocity 

The terminal velocity UX(D) of a precipitable particle of type X = R (rain), H (hail), S (snow), and 

effective diameter D is the maximum velocity this particle may develop under gravitational settling 

relative to its ambient air. In theory, UX(D) can be obtained by balancing the weight of the particle 

with the sum of the static and dynamic buoyancy (i.e. drag forces) on the particle. For a rigid 

spherical raindrop, one obtains UR(D)∝ D (e.g. Rogers and Yau, 1996).  

Theoretical calculation of UX(D) becomes more complicated when the dynamical characteristics of 

the falling particles depend on their linear size D and the ambient temperature T. For example, 

droplets with diameters D smaller than about 0.35 mm are approximately spherical, drops with 

diameters in the range 0.35-1 mm tend to deform by the aerodynamic shear receiving a more 

elliptical shape, whereas larger drops frequently break down into smaller droplets due to excessive 

elongation or surface vibrations (e.g. Testik and Barros, 2007; Uijlenhoet, 2008). Moreover, the 

crystallic structure, shape, size and, hence, the aerodynamic properties of snowflakes depend on the 

ambient temperature T (Fletcher, 1962; Locatelli and Hobbs, 1974; Houghton, 1985; and Rogers and 

Yau, 1996).  
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In the absence of exact theoretical solutions for the terminal velocity UX(D) of precipitation particles 

under complex atmospheric conditions, several empirical formulae have been developed (e.g. Gunn 

and Kinzer, 1949; Liu and Orville, 1969; Wisner et al., 1972; Locatelli and Hobbs, 1974; Atlas and 

Ulbrich, 1977; Lin et al., 1983). According to Liu and Orville (1969), who performed a least squares 

analysis of Gunn and Kinzer’s (1949) data, the terminal velocity of raindrops of diameter D can be 

approximated by a power-law type relationship:  

 UR(D) = a D
 b (21) 

where a = 2115 cm1–b/s and b = 0.8 are empirical constants. For raindrops with diameters in the 

range 0.5 ≤ D ≤ 5 mm, Atlas and Ulbrich (1977) (see also Uijlenhoet, 2008) suggest the use of 

equation (21) with parameters a = 1767 cm1–b/s and b =0.67.  

For hail, Wisner et al. (1972) suggest: 

 UH(D) = D1/2 







4gρH

3CDρ

1/2

  (22) 

where g = 9.81 m/s2 is the acceleration of gravity, ρ ≈ 1.2 kg/m3 is the density of air, ρH = 800-900 

kg/m3 is the density of the hailstone and CD = 0.6 is a drag coefficient.  

For graupel-like snow of hexagonal type, Locatelli and Hobbs (1974) suggest: 

 US(D) = c D
d (23) 

where c = 153 cm1–d/s and d = 0.25 are empirical constants that, in general, depend on the shape of 

the snowflakes (e.g. Stoelinga et al., 2005).  

UX(D) relationships other than power laws have also been suggested (e.g. Beard, 1976, and review by 

Testik and Barros, 2007). However, the power-law form in equations (21)-(23) is the only functional 

form that is consistent with the power law relations between the radar reflectivity factor Z (see 

section  3.2) and the rainfall intensity i (Uijlenhoet 1999, 2008). 

2.3.2 Size distribution 

A commonly used parameterization for the size distributions of precipitation particles is that 

introduced by Marshall and Palmer (1948). According to this parameterization, precipitation 

particles have exponential size distributions of the type  

 nX(D) = n0X exp(–bXD),  X = R, H, S  (24) 

where the subscript X denotes the type of the particle: rain (R), hail (H) or snow (S), D is the effective 

diameter of the particle, bX is a distribution scale parameter with units of [Length–1] (see below) and 

n0X is an intercept parameter that depends on the type of the particle with units of [Length–4]: that is, 

number of particles per unit diameter and per unit volume of air (see below).  

To determine the parameters n0R and bR in equation (24) for rainfall, Marshall and Palmer (1948) 

used observations from summer storms in Canada. The study reported a constant value of the 

intercept parameter n0R = 8 × 10–2 cm–4, whereas the scale parameter bR was found to vary with the 
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rainfall intensity i at ground level as: bR = 41 i –0.21 cm–1, where i is in mm/h. Clearly, the mean 

raindrop size 1/bR increases with increasing rainfall intensity i. 

Gunn and Marshall (1958) used snowfall observations from Canada to determine the parameters n0S 

and bS for snow. The study concluded that both n0S and bS depend on the precipitation rate as: 

 n0S = 0.038 i –0.87 cm–4,   bS = 25.5 i –0.48 cm–1  (25) 

where i is the water equivalent (in mm/h) of the accumulated snow at ground level. Similar to the 

mean raindrop size, the mean snowflake size 1/bS increases with increasing i. A modification to the 

distribution model of Gunn and Marshall (1958) has been proposed by Houze et al. (1979) and Ryan 

(1996). According to these authors the intercept parameter for snow, n0S, is better approximated as 

a decreasing function of the temperature T of the ambient air. The latter is responsible for the 

properties and structure of ice crystals (see section  2.2). 

Federer and Waldvogel (1975) used observations from a multicell hailstorm in Switzerland to 

determine the parameters n0H and bH for hail. The study showed pronounced variability of the 

intercept parameter n0H = 15 × 10–6 to 5.2 × 10–4 cm–4, moderate variability of the scale parameter 

bH = 3.3 - 6.4 cm–1, and concluded to an exponential mean size distribution for hailstones with 

constant parameters: n0H ≈ 1.2 × 10–4 cm–4 and bH ≈ 4.2 cm–1. 

Alternative models, where the size distributions of precipitation particles are taken to be either 

gamma or lognormal, have also been suggested (e.g. Ulbrich, 1983; Feingold and Levin, 1986 and 

Joss and Waldvogel, 1990). However, the exponential distribution model introduced by Marshall and 

Palmer (1948) has been empirically validated by a number of studies (see e.g. Kessler, 1969; Federer 

and Waldvogel, 1975; Joss and Gori, 1978; Houze et al., 1979; Ryan, 1996; Ulbrich and Atlas, 1998; 

Hong et al., 2004), and has found the widest application by being used in the cloud resolving 

schemes of many state-of-the-art numerical weather prediction (NWP) models (e.g. Cotton et al., 

1994; Grell et al., 1995; Reisner et al., 1998; Thompson et al., 2004; Skamarock et al., 2005).  

A more general formulation for the size distribution of precipitation particles, which includes the 

exponential model of Marshall and Palmer (1948), and the gamma and lognormal models as special 

cases, was suggested by Sempere-Torres et al. (1994, 1998). According to their formulation, the size 

distribution of precipitation particles can be parameterized as  

 nX(D) ∝ i f g(DX/i
 z),  X = R, H, S  (26) 

where f and z are constant exponents, i is the precipitation rate and g(x) is a scalar function with 

parameter vector a. For a certain form of g, the functional dependence of the parameters f, z and a 

is obtained by satisfying the equation for the theoretical precipitation rate originating from particles 

with size distribution nX(D) (Sempere-Torres et al., 1994, 1998; Uijlenhoet, 2008):  

 i = 
π

6
 ⌡⌠

0

∞
 

nX(D) UX(D) D3 dD , X= R, H, S (27) 

where UX(D) is given by equations (21) - (23). Note, however, that the units of nX depend on those 

used for D and i and, of course, the functional form of g(x).   
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2.4 Clouds and precipitation types 

Clouds owe their existence to the process of condensation, which occurs in response to several 

dynamical processes associated with motions of air masses, such as orographic or frontal lifting (see 

section  2.5), convection and mixing. At the same time, clouds and the resulting precipitation 

influence the dynamical and thermodynamic processes in the atmosphere. For example, clouds 

affect air motions through physical processes, such as the redistribution of the atmospheric water 

and water vapour, the release of latent heat by condensation and the modulation of the transfer of 

solar and infrared radiation in the atmosphere.  

A cloud system is formed by a number of recognizable isolated cloud elements that are identifiable 

by their shape and size (e.g. Scorer and Wexler, 1963; Austin and Houze, 1972; Orlanski, 1975). On 

the lowest extreme, cloud systems with scale of about 1 km or less are classified as microscale 

systems. On the highest extreme, atmospheric phenomena of linear extent of 1000 km and upwards 

are classified in the synoptic scale and include the cloud systems associated with baroclinic 

instabilities, and extratropical cyclones (i.e. low-pressure centres). In between those two extreme 

scales, atmospheric phenomena with linear extent between a few kilometres to several hundred 

kilometres are the so-called mesoscale phenomena. These phenomena are more likely associated 

with atmospheric instabilities, as well as frontal and topographic lifting. Mesoscale phenomena 

include many types of clouds and cloud systems that are usually classified in two main categories: 

stratiform and convective (cumulus) cloud systems. In general, stratiform cloud systems have the 

shape of a flat appearing layer and produce widespread precipitation associated with large scale 

ascent, produced by frontal or topographic lifting, or large scale horizontal convergence. By contrast, 

convective cloud systems have large vertical development, produce localized showery precipitation 

and are associated with cumulus-scale convection in unstable air. Next we focus on the structure of 

these systems and the forms of precipitation they produce. 

2.4.1 Cumulus cloud systems  

Cumulus clouds are formed by small thermals (upward moving air parcels heated by contact to the 

warm ground) where condensation occurs and they grow to extend vertically throughout the 

troposphere. Their vertical extent is controlled by the depth of the unstable layer, while their 

horizontal extent is comparable to their vertical extent. A typical linear dimension of a cumulus 

cloud is 3-10 km, with updraft velocities of a few metres per second (Rogers and Yau, 1996).  

Observations performed by Byers and Braham (1949; see also Weisman and Klemp, 1986) revealed 

that convective storms are formed by a number of cells, each one of which passes through a 

characteristic cycle of stages (Fig. 15). The cumulus stage of a cell is characterized by an updraft 

throughout most of the cell. At this stage, which lasts approximately 10-20 min, the cell develops 

and expands vertically while the air becomes saturated and hydrometeors grow due to vapour 

condensation and turbulent coalescence (see section  2.2).  

Some ice and water particles grow large enough to fall relative to the ambient updraft and initiate a 

downdraft within the cell. The downdraft is initially in saturated condition, but as it moves toward 

the lower troposphere and mixes with sub-saturated air, evaporational cooling occurs, which 

introduces negative buoyancy and accelerates the downdraft. This is the start of the mature stage of 

the cell, which lasts for approximately 15-30 min. The air of the downdraft reaches the ground, as a 
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cold core, and changes the surface wind pattern. This change may initiate a new thermal at a 

neighbouring location which might grow to a new cell. The downdraft interferes with the updraft at 

the lower levels of the cloud and finally cuts off the updraft from its source region. At this point, the 

cell enters its dissipating stage. At this stage, which lasts for about 30 min, the updraft decays and 

consequently the precipitation source is eliminated. 
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Fig. 15 Stages of development of convective cells (adapted from Weisman and Klemp, 1986). 

2.4.2 Stratus cloud systems 

Stratus clouds are associated with mesoscale, or even synoptic, vertical air motions that arise from 

large scale horizontal convergence and frontal or orographic lifting of moist air masses. The 

ascending motion of air is weak (i.e. a few tens of centimetres per second) relative to cumulus 

convection, but it extends over large areas and durations to produce widespread rain or snow.  

The life time of a stratus formation is of the order of days, and its size may extend over hundreds of 

kilometres horizontally. The ascended air masses, having the form of a flat appearing layer, remain 

convectively stable even after they are lifted to higher altitudes. Since atmospheric turbulence is not 

intense, initiation of rain is mainly dominated by the ice particle growth due to vapour deposition 

(the Bergeron-Findeisen mechanism; section  2.2), when the ascended air masses are thick enough to 

reach subfreezing temperatures. In general, thin stratus clouds are usually non-precipitating, 

whereas thick stratus clouds (i.e. 1-2 km vertical extent) are capable of producing substantial 

widespread rain or snow. 

Although the classification of cloud systems in stratiform and convective is useful for observation 

purposes, it cannot be considered sharp (Harrold and Austin, 1974). Observations from radars or 

raingauges show that widespread precipitation has fine-scale structure with intense precipitation 

regions confined to elements with size of a few kilometres, while rainfall features of convective 

origin (e.g. cells) can grow and/or cluster over a large region producing continuous precipitation 

similar to that of stratiform formations.  

In general, convective rainfall patterns are non uniform and are associated with locally intense 

rainfall regions ranging in size from 3-10 km. The latter evolve rapidly in time and are separated by 
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areas free of precipitation. By contrast, stratiform patterns are associated with less pronounced 

small scale structure and a wider overall extent that persists in time.  

2.5 Precipitation generating weather systems  

2.5.1 Fronts 

Atmospheric circulation is formed by advecting air masses with fairly uniform characteristics. 

Depending on their source of origin, different air masses may have different temperatures and 

moisture contents. For example, continental air masses are dryer and their temperatures vary in a 

wider range relative to maritime air masses. The interface of two opposing air masses with different 

temperatures and moisture contents is usually referred to as a front. Along this interface, the 

warmer and lighter air rises above the colder and denser air. The vertical lifting causes the warmer 

air to cool adiabatically, the water vapour to condense and, hence, precipitation to form.  

A cold front occurs when advancing cold air wedges itself under warmer air and lifts it (Fig. 16.a), 

whereas a warm front develops when faster moving warm air overrides a colder and denser air mass 

(Fig. 16.b). An occluded front forms when warm air is trapped between two colder and denser air 

masses. An example of an occluded front is shown in Fig. 16.c, where a cold front catches up a 

slower moving warm front.  
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Fig. 16 Schematic illustration of different types of fronts: (a) cold front, (b) warm front and (c) occluded front 

(adapted from Koutsoyiannis and Xanthopoulos, 1999). 
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Fronts may extend over hundreds of kilometres in the horizontal direction and are associated with 

vertical wind speeds of the order of a few tens of centimetres per second. This range of values is in 

accordance with vertical motions caused by the horizontal wind convergence of synoptic-scale low-

level flow. Hence, frontal precipitation is mostly stratiform with widespread rain or snow over large 

areas and durations. Note, however, that embedded within the areas of frontal precipitation there 

are mesoscale regions that exhibit cellular activity. 

2.5.2 Mechanical lifting and orographic precipitation 

Orographic precipitation occurs when horizontally moving warm and humid air meets a barrier such 

as a mountain range. In this case, the barrier causes uplift of the incoming air. As the moist air moves 

upslope, it cools adiabatically, water vapour condenses to liquid water or ice (depending on the 

altitude where the dew point temperature occurs) and precipitation is likely to form (e.g. Smith, 

1993; Hemond and Fechner-Levy, 2000). In general, orographic precipitation (unless combined with 

other mechanisms such as cyclonic activity and fronts) is narrow banded since it occurs in 

association with water vapour condensation by mechanical lifting, a process that becomes effective 

at a certain elevation along the topography. After surpassing the top of the mountain range, on the 

lee side, the air moves downward and this causes adiabatic warming, which tends to dissipate the 

clouds and stop the precipitation, thus producing a rain shadow. 

2.5.3 Extratropical cyclones 

Extratropical cyclones are synoptic scale low pressure systems that occur in the middle latitudes (i.e. 

pole-ward of about 30o latitude) and have length scales of the order of 500-2500 km (e.g. Hakim, 

2003). They usually form when two air masses with different temperatures and moisture contents 

that flow in parallel or are stationary become coupled by a pre-existing upper level disturbance 

(usually a low pressure centre) near their interface.  

An example is the formation of extratropical cyclones along the interface of midlatitude westerlies 

(i.e. winds that flow from West to East; e.g. Lutgens and Tarbuck, 1992) with the equator-ward 

moving polar, and thus colder, air masses (i.e. polar easterlies). As shown in Fig. 17, which refers to 

the Northern Hemisphere, the motion of both warm and cold air masses is caused by pressure 

gradients and their direction is south-north and north-south, respectively. However, these directions 

are diverted to the right (in the Northern Hemisphere) by Coriolis forces. The initial disturbance 

formed by the shear along the interface of the two air masses (Fig. 17.a) grows as the warmer and 

lighter air rises above the colder air and starts rotating in an emerging spiral called the cyclone (Fig. 

17.b). As the cyclone evolves, the cold front approaches the slower moving warm front (Fig. 17.c) 

and then catches up with it forming an occluded front (Fig. 17.d). Finally, mixing between the two air 

masses causes the fronts to lose their identities and the cyclone to dissipate. The adiabatic cooling of 

the warm and moist air results in a widespread region of stratiform precipitation that propagates 

with the upper-level flow far beyond the fronts (Fig. 17.e).  
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Fig. 17 (a)-(d) Schematic illustration of the evolution of an extratropical cyclone at the interface of midlatitude 

westerlies and the equator-ward moving polar easterlies (adapted from Koutsoyiannis and Xanthopoulos, 

1999). (e) Extra-tropical cyclone over the British Isles on 17 January 2009: motion of air masses, fronts and 

characteristic precipitation regions (www.ncdc.noaa.gov/sotc/index.php?report=hazards&year=2009&month 

=jan). 
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2.5.4 Isolated extratropical convective storms 

A short-lived single-cell is the simplest storm of convective origin. Single cells have horizontal cross-

sections of the order of 10-100 km2 and move with the mean environmental flow over the lowest 5-

7 km of the troposphere. The stages of development of a single-cell storm were discussed in section 

 2.4. The multi-cell storm is a cluster of short-lived single cells with cold outflows (i.e. downdrafts)  

that combine to form a large gust front (Weisman and Klemp, 1986). The convergence along the 

leading edge of the front triggers new updraft development and subsequent formation of new cells. 

Because of the new cell development, multi-cell storms may last several days and span over large 

areas with linear extents of hundreds of kilometres.  

The super-cell storm is the most intense of all isolated convective storms. It has a lifetime of several 

hours, it exhibits large vertical development and produces strong winds, heavy rainfall or hail and 

long-lived tornadoes, that is, intense vortices with diameter of the order of 100-500 m (e.g. 

Browning and Ludlam, 1962; Rotunno, 1986; Weisman and Klemp, 1986; Bluestein, 2003), where the 

updrafts and downdrafts are displaced horizontally and interact mutually to sustain a long-lived 

circulation (Fig. 18). The updraft enters at low levels and ascends in a region called the vault, which 

might penetrate into the stratosphere. Super-cell storms usually evolve from multi-cell formations 

when the magnitude of the vertical wind shear, defined as the difference between the density 

weighted mean wind over the lowest 6 km and a representative surface layer wind (e.g. 500 m mean 

wind), suffices to produce a long-lived rotating updraft that mutually interacts with the downdraft 

(e.g. Weisman and Klemp, 1982, 1984, 1986).  
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Fig. 18 Schematic illustration of the wind circulation in a super-cell storm (adapted from 

www.nssl.noaa.gov/primer/tornado/). 
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2.5.5 Extratropical squall lines and rainbands 

Intense rainfall events are usually organized in lines (i.e. squall lines) and bands (i.e. rainbands) with 

characteristic scales of hundreds of kilometres. According to Hane (1986), rainbands are sufficiently 

elongated rainfall areas that are non-convective or weekly convective, and squall lines include all 

linear convective structures stronger than rainbands. Those large scale features are considered to be 

manifestations of the large-mesoscale horizontal circulation in association with spatial fluctuations 

of the surface temperature and moisture content of atmospheric air masses.  

The conditions for squall line formation are: (1) a convectively unstable near-surface environment 

(i.e. moist and warm near-surface air with relatively cold air aloft) to maintain the development of 

convective cells, (2) a layer of dry air directly above the near-surface moist air to enhance 

development of an intense and wide cold downflow by evaporative cooling (i.e. the dry middle-level 

air causes precipitation particles to evaporate and a negatively buoyant cold front to form), and (3) a 

triggering mechanism for release of the convective instability (e.g. frontal or orographic lifting). Once 

the squall line has formed, it feeds itself through convergence along the cold gust front. This 

convergence produces strong ascent and forms new cells ahead of the storm. 

Rainbands in extratropical regions occur primarily in association with well organized extratropical 

cyclones (Hane, 1986). In this case, precipitation is maintained by the ascent resulting from the 

warm advection of the advancing cyclone, with subsequent formation of a widespread region of 

stratiform precipitation (section  2.5.3). Extratropical rainbands can also be formed in synoptic-scale 

environments other than those associated with cyclonic circulation. An example is the environments 

associated with the development of symmetric instabilities (e.g. Bennetts and Sharp, 1982; Seltzer et 

al., 1985).  

2.5.6 Monsoons 

The term monsoon generally applies to climates that exhibit long, distinct and remarkably regular 

rainy and dry periods associated with the spatial distribution of solar heating during summer and 

winter. According to a definition proposed by Ramage (1971), a monsoon climate is characterized 

by: (1) prevailing wind directions that shift by at least 120° between January and July, (2) prevailing 

wind direction that persists at least 40% of the time in January and July, (3) mean wind speeds that 

exceed 3 m/s in either January or July, and (4) fewer than one cyclone-anticyclone alternation every 

2 years in either January or July in a 5o latitude-longitude rectangle. In essence, Ramage’s (1971) 

criteria exclude most extratropical regions with prevailing synoptic-scale cyclonic and anticyclonic 

circulations and, in addition, require the mean wind direction to be driven and sustained exclusively 

by the seasonally varying temperature contrast between continental and oceanic masses. Under 

these constraints, only India, South-Eastern Asia, Northern Australia and West and central Africa 

have monsoon climates (Slingo, 2003). For example, in India, about 80% of the mean annual rainfall 

accumulation (about 2 m) occurs during the months of June, July and August (Smith, 1993). 

The main driving mechanism for monsoons is the temperature contrast between continental and 

oceanic masses due to the seasonal cycle of solar heating. More precisely, the lower thermal inertia 

of continental masses relative to oceans causes the former to heat up more rapidly during spring 

and summer by the solar radiation. This results in a sharp temperature gradient, which causes a 

humid flow of oceanic near-surface air to direct toward the land (something similar to a massive sea 
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breeze). As it reaches the land, the humid air warms up and rises, water vapour condenses to liquid 

water and rain falls. A similar process occurs during winter, when the continental air masses cool up 

more rapidly than the surrounding ocean water, with subsequent formation of a cold and dry 

massive low-level flux toward the ocean. 

An important factor that determines the intensity of monsoon rainfall is the geographical orientation 

of continents and oceans relative to the equator (Slingo, 2003). For example, the North-South 

orientation of the South-Eastern Asian and Northern Australian monsoon system allows the dry 

outflow from the winter continent to warm up and load moisture from the ocean, flow across the 

equator toward the summer hemisphere and, eventually, feed the monsoon rains over the summer 

continent. This is also the reason why the largest rainfall accumulations for durations larger than 24 

hours are associated with the Asian-Australian monsoon system (Smith, 1993).  

2.5.7 Tropical cyclones 

Tropical cyclones (TCs) form a particular class of synoptic scale low pressure rotating systems that 

develop over tropical or subtropical waters (Anthes, 1982; Landsea, 2000). These systems have 

linear extent of the order of 300-500 km and are characterized by well organized convection and 

cyclonic (counter-clockwise in the Northern Hemisphere) surface wind circulation around a relatively 

calm low-pressure region, called the eye of the storm (Figs. 19 and 20).  
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Fig. 19 Schematic representation of the structure of a mature hurricane. 

Tropical cyclones with sustained wind speeds in the range 17-32 m/s are called tropical storms (TS), 

whereas stronger TCs are usually referred to as hurricanes (i.e. when observed in the North Atlantic 

Ocean, in the Northeast Pacific Ocean east of the dateline and in the South Pacific Ocean east of 
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160oE) or typhoons (i.e. when observed in the Northwest Pacific Ocean west of the dateline). Note, 

however, that extreme rainfall accumulations for durations of the order of a day or higher are 

usually produced by moderate or even low intensity TCs (Langousis and Veneziano, 2009b). An 

example is the tropical storm (TS) Allison in 2001, which looped over the Houston area causing 

rainfall accumulations in excess of 850 mm. According to the US National Oceanic and Atmospheric 

Administration (NOAA; Stewart, 2002), TS Allison (2001) ranks as the costliest and deadliest TS in the 

history of the US with 41 people killed, 27 of which where drowned, and more than $6.4 billion 

(2007 USD) in damage. 
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Fig. 20 TRMM microwave imager (TMI) rainfall retrievals for hurricane Katrina on 28 August (2005) at 21:00 

UTC (frame 44373): different types of rainbands and their locations relative to the centre of the storm.  

The genesis and development of tropical cyclones require the following conditions to be maintained 

(e.g. Gray, 1968, 1979): (1) warm ocean waters (surface temperature T > 27oC); (2) a conditionally 

unstable atmosphere where the air temperature decreases fast with height; (3) a relatively moist 

mid-troposphere to allow the development of widespread thunderstorm activity; (4) a minimum 

distance of about 500 km from the equator in order for the Coriolis force to be sufficiently large to 

maintain cyclonic circulation; (5) a near-surface disturbance with sufficient vorticity and low-level 

convergence to trigger and maintain the cyclonic motion; and (6) low magnitude of vertical wind 

shear (less than 10 m/s), defined as the difference between the 200- and 850-hPa horizontal wind 

velocities in the annular region between 200 and 800 km from the TC centre (Chen et al., 2006). The 

latter condition is important for the maintenance of the deep convection around the centre of the 

cyclone. 
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At a first approximation, a tropical cyclone can be seen as a heat engine fuelled by the buoyant 

motion of warm and saturated (hence convectively highly unstable) air masses that lie directly above 

the warm tropical and subtropical ocean waters (e.g. Emanuel, 1986, 1989; Renno and Ingersoll, 

1996; Marks, 2003). By contrast, extratropical cyclones obtain their energy from the horizontal 

temperature gradients in the atmosphere (section  2.5.3). 

During its mature stage, a tropical cyclone includes four distinct flow regions (Yanai 1964; Smith, 

1968; Frank, 1977; Willoughby, 1990; Smith, 2000), as depicted in Fig. 19:  

1. Away from the surface boundary (in the altitude range from 2-3 km to about 10 km), frictional 

stresses are negligible and the horizontal winds are in approximate gradient balance (e.g. La 

Seur and Hawkins, 1963; Hawkins and Rubsam, 1968; Holland, 1980; Willoughby, 1990, 1991; 

Vickery et al., 2000). In this region, usually referred to as the main vortex, the radial inflow is 

negligible, whereas the tangential flow is maintained by the balance between the inward-

directed pressure gradient force and the sum of the outward-directed centrifugal and Coriolis 

forces.  

2. Within the boundary layer (in the altitude range below 1-2 km), frictional stresses de-

accelerate the tangential flow, reduce the magnitude of the Coriolis and centrifugal forces and 

result in an inward net force that drives low level convergence. Calculations performed by 

Smith (1968, 2003), Kepert (2001), Kepert and Wang (2001) and Langousis et al. (2008) show 

that the radial inflow in the boundary layer turns upward before it reaches the TC centre 

causing vertical fluxes of moisture. Langousis and Veneziano (2009a) showed that these fluxes 

can be used to obtain accurate estimates for the large-scale mean rainfall intensity field in TCs 

as a function of the TC characteristics.  

3. At altitudes in excess of about 10 km the curved isobars, which are responsible for the TC 

formation and maintenance, start to flatten. As a consequence, the inward directed pressure 

gradient force that maintains the cyclonic circulation decreases with increasing height leading 

to an outward directed net force that drives high-level divergence. 

4. Finally, there is a core flow region, called the eye of the TC, with diameters of the order of 15-

40 km. This region is free of cloud with light tangential winds and a downflow close to the axis. 

The condensation of water vapour caused by the ascending motion of humid near-surface air leads 

to the formation of cloud systems. These systems, which are usually precipitating, are organized 

around the cyclone centre into long quasi-circular formations usually referred to as rainbands. 

Despite variations of rainband characteristics from one storm to another and during the evolution of 

a single storm (e.g. Miller, 1958; Barnes et al., 1983; Marks, 1985; Molinari et al., 1999), a number of 

studies (Willoughby et al., 1984; Powell, 1990; Molinari et al., 1994, 1999, among others) have 

shown that rainbands, depending on their location relative to the storm centre, share similar 

structural characteristics and can be organized in three distinct classes: i.e. eyewall, inner-rainbands 

and outer-rainbands (Fig. 20): 

1. The eyewall is a well developed convective band that surrounds the eye of the TC. This band 

has width of approximately 10-15 km with upward directed quasi-steady velocities in the 

range of 0.5-3 m/s or more, with the larger values being associated with more intense 
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systems. The quasi-steady updrafts mostly reflect the radial convergence of horizontal fluxes, 

which become maximum close to the eye of the TC (Smith, 1968; Shapiro, 1983; Kepert, 

2001). The eyewall almost always has the highest cloud tops (Jorgensen, 1984a), contains the 

largest annular mean rainfall intensity (Marks, 1985; Houze et al., 1992) and exhibits weak 

cellular structure as evidenced by radar observations (e.g. Jorgensen, 1984b; Marks, 1985). 

2. The inner-rainbands (Molinari et al., 1994; 1999) are a group of spiral bands located outside 

the eyewall at radial distances smaller than approximately 120 km, and are also referred to as 

stationary band complex (Willoughby et al., 1984). This group moves slowly, if at all, and 

maintains a rather fixed position relative to the vortex. Rainfall inside the inner-rainband 

region is mostly stratiform, with active convection covering 5-10% of the total rainfall area and 

contributing 40-50% of the total rainfall volume (e.g. Marks, 1985; Marks and Houze, 1987; 

Marks et al., 1992). 

3. Outer-rainbands typically occur at radial distances larger than approximately 150 km from the 

TC centre (e.g. Powell, 1990; Molinari et al., 1994). They develop by the increased 

convergence at the boundary of the vortex envelope, where the convectively unstable 

environmental air flows around the storm and gives rise to formation of convective cells (e.g. 

Beer and Giannini, 1980; Ooyama, 1982; Molinari et al., 1994). Consequently, outer-rainbands 

have more cellular structure than inner ones, which develop in a less unstable atmosphere.  

3 Precipitation observation and measurement  

3.1 Point measurement of precipitation  

3.1.1 Measuring devices 

The measurement of precipitation at a point is as easy as placing a bucket at the point of 

observation and periodically measuring the quantity of water it collects. The collected volume 

divided by the area of the opening is the precipitation depth. Due to this simplicity, such gauges 

have been used systematically since many centuries, and must have been discovered independently 

in different times, perhaps even in the antiquity, and in different places in the world, such as in 

ancient Greece and ancient India (Kosambi, 2005). However, their records have not survived, so that 

the oldest available records now are those in Seoul, Korea, already presented in section  1.3 and Fig. 

7 (upper), which go back to 1770, even though measurements must have been taken in much earlier 

periods since 1441 (Arakawa, 1956). 

The traditional device for rainfall measurement, known as rain gauge or pluviometer, is still in use 

today and, in fact, remains the most accurate device also providing the calibration basis for new 

measurement devices and techniques. It is a simple cylinder whose opening has an area (e.g. 200-

500 cm2 according to World Meteorological Organization, 1983) larger than (e.g. tenfold) the cross 

section of the cylinder, which allows a greater sensitivity of the reading of the rainfall depth in a 

millimetric ruler attached to the cylinder. In another type of instrument, known as cumulative gauge, 

which is placed in inaccessible areas, the diameter of the cylinder may be larger than that of the 

opening so as to be able to store a large volume of precipitation between the times of two visits at 

the place.  
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In an autographic (or recording) rain gauge, also known as a pluviograph the water depth in the 

cylinder is recorded with the help of a mechanism involving a floating device. Another type of 

recording gauge, known as a tipping-bucket gauge, introduces the rainwater to one of a pair of 

vessels with a known small capacity (typically equivalent to 0.2 mm of rainfall) that is balanced on a 

fulcrum; when one vessel is filled, it tips and empties and the time of this event is recorded, while 

the other vessel is brought into position for filling. In traditional autographic devices these 

recordings are done on a paper tape attached to a revolving cylinder driven by a clockwork motor 

that is manually wound. In modern instruments this device is often replaced by electronic systems, 

which provide digital recordings on a data logger and/or a computer connected by a cable or radio 

link.  

A raingauge does not include all precipitation forms, snow in particular, except in light snowfalls 

when the temperature is not very low and the snow melts quickly. Generally, accurate measurement 

of snow precipitation (the water equivalent) needs specific instruments, equipped with a heating 

device to cause melting of snow. If such an instrument is not available, the snow precipitation is 

estimated as 1/10 of the snowfall depth (see justification in section  1.3).  

3.1.2 Typical processing of raingauge data 

Measurement of precipitation in raingauges is followed by several consistency checks to locate 

measurement errors and inconsistencies. Errors are caused by numerous reasons, including human 

lapses and instrument faults, which may be systematic in case of inappropriate maintenance. 

Inconsistencies are caused by changes of installed instruments, changes in the environmental 

conditions (e.g. growing of a tree or building of a house in the vicinity of the raingauge), or 

movement of the gauge to a new location. When errors are detected, corrections of the 

measurements are attempted.  

The standard meteorological practices include checks of outliers (a measured value is rejected if it is 

out of preset limits), internal consistency (checks are made whether different variables, e.g. 

precipitation and incoming solar radiation are compatible with each other), temporal consistency 

(the consistency of consecutive measurements is checked) and spatial consistency (the consistency 

of simultaneous measurements in neighbouring stations is checked). Such checks are done in the 

time scale of measurement (e.g. daily for pluviometers or hourly for pluviographs) but systematic 

errors can only be located at aggregated (e.g. annual) time scales.  

The most popular method applied at an aggregated time scale for consistency check and correcting 

of inconsistent precipitation data is that of the double-mass curve, which is illustrated in Fig. 21. The 

method has a rather weak statistical background and is rather empirical and graphical (but there is a 

more statistically sound version in the method by Worsley, 1983). The double-mass curve is a plot of 

the successive cumulative annual precipitation Σyi at the gauge that is checked versus the successive 

cumulative annual precipitation Σxi for the same period of a control gauge (or the average of several 

gauges in the same region). If the stations are close to each other and lie in a climatically 

homogeneous region, the annual values should correlate to each other. A fortiori, if the two series 

are consistent with each other, the cumulated values Σyi and Σxi are expected to follow a 

proportionality relationship. A departure from this proportionality can be interpreted as a systematic 

error or inconsistency, which should be corrected. Such a departure is usually reflected in a change 

in the slope of the trend of the plotted points.  
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Fig. 21 Illustration of the double-mass curve method and the associated risks in applying it: (upper) Typical 

double-mass curve for 50 pairs of points, where the first 25 (newest) and the last 25 (oldest) form slopes m = 

0.7 and m΄ = 0.95, respectively; the adjusted points with λ = m/ m΄ = 0.737 are also shown. (lower) Comparison 

of probability distributions of the departure of the ratio λ from unity for series independent in time or with HK 

behaviour with H = 0.75; the distributions were calculated using a Monte Carlo method based on synthetic 

series with a total size of 1000.  
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The aggregation of annual values xi and yi to calculate Σxi and Σyi is typically done from the latest to 

the oldest year. Fig. 21 (upper) shows the double-mass curve for 50 pairs of values representing 

annual precipitation at two points, whose cross-correlation (between xi and yi) is 0.82. The newest 

25 points form a slope of m = 0.70, whereas the oldest 25 form a much greater slope, m΄= 0.95. 

Assuming that the newest points are the correct ones (with the optimistic outlook that things are 

better now than they were some years before) we can correct the older 25 annual yi by multiplying 

them with the ratio of slopes, λ := m / m΄ = 0.737. A second double-mass curve, constructed from 

the corrected measurements, i.e., from yi΄ := yi for i ≤ 25 (the newest years) and yi΄ := λ yi for i > 25 

(the oldest years) is also shown in Fig. 21 (upper). 

In fact, the data values used in Fig. 21 are not real rainfall data but rather are generated from a 

stochastic model (Koutsoyiannis 2000b, 2002) so that both stations have equal mean and standard 

deviation (1000 and 250 mm, respectively), be correlated to each other (with correlation coefficient 

0.71) and, most importantly, exhibit HK behaviour (with H = 0.75, compatible with the values found 

in the real world examples of section  1.5). Hence, evidently, all values are “correct”, “consistent”, 

and “homogeneous”, because they were produced by the same model assuming no change in its 

parameters. Thus, the example illustrates that the method can be dangerous, as it can modify 

measurements, seemingly inconsistent, which however are correct. While this risk inheres even in 

time independent series, it is largely magnified in the presence of HK behaviour. Fig. 21 (lower) 

provides a normal probability plot of the departure of the ratio λ from unity (where the horizontal 

axis z is the standard normal distribution quantile and the distributions were calculated by the 

Monte Carlo method) for two cases: assuming independence in time and assuming HK behaviour 

with H = 0.75 as in the above example. The plots clearly show that, for the same probability, the 

departure of λ from unity in the HK case is twice as high as in the classical independence case. For 

the HK case, departures of ±0.25 from unity appear to be quite normal for 25-year trends and even 

more so for finer time scales, i.e., ±0.35 to ±0.40 for 10-year to 5-year consecutive trends (not shown 

in figure). Note that the method is typically applied even for correction of as short as 5-year trends 

(Dingman, 1994), and so its application most probably results in distortion rather than correction of 

rainfall records.  

Apparently, the “correction” of the series using the double-mass curve method removes these 

“trends” that appear in one of the two time series. Removal of trends results in reduction of the 

estimated Hurst coefficient or even elimination of the exhibited HK behaviour (Koutsoyiannis, 2003a, 

2006b). Thus, if we hypothesize that the HK behaviour is common in precipitation, application of 

methods such as the double-mass curves may have a net effect of distortion of correct data, based 

on a vicious circle logic: (a) we assume time independence of the rainfall process; (b) we interpret 

manifestation of dependence (the HK behaviour in particular) as incorrectness of data; (c) we modify 

the data so as to remove the influence of dependence; (d) we obtain a series that is much closer to 

our faulty assumption of independence. The widespread use of the double-mass curve method in 

routine processing of precipitation time series may thus have caused enormous distortion of real 

history of precipitation at numerous stations worldwide, also hiding the HK behaviour.  

The above discourse aims to issue a warning against unjustified use of consistency checks and 

correction methods that could eliminate the extreme values (see e.g. the note about the Seoul 

station in section  1.3) and the long-term variability implied by the HK behaviour; the effect of both 

these mistreatments of data causes serious underestimation of the design precipitation and flow in 
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engineering constructions and management decisions. As a general advice for their correct 

application, we can stress that all methods of this type should never be applied blindly. An 

inspection of local conditions (environment of the raingauge station, practices followed by the 

observer) as well as of the station’s archive history is necessary before any action is taken toward 

altering the data. Unless information on local conditions and archive history justify that 

inconsistencies or errors exist, corrections of data should be avoided. 

3.1.3 Interpolation and integration of rainfall fields 

The interpolation problem, i.e., the estimation of an unmeasured precipitation amount y from 

related precipitation quantities xi (i = 1, …, n) is encountered very often in routine hydrologic tasks, 

such as the infilling of missing values of recorded precipitation at a station or the estimation of 

precipitation at an ungauged location. The integration problem refers to the estimation of an 

average quantity y over a specified area (or time period) based on measurements xi (i = 1, …, n) of 

the same quantity and the same time period at different points (or respectively, at different time 

periods at the same point). The literature provides a huge diversity of methods, most of which, 

however, could be reduced to a linear statistical relationship applicable to both the interpolation 

and the integration problem: 

 y = w1 x1 + … + wn xn + e (28) 

where wi denotes a numerical coefficient (weighting factor) and e denotes the estimation error. The 

same could be written in vector form: 

 y = wT x + e (29) 

with w := [w1, …, wn]T and x := [x1, …, xn]T, and the superscript T denotes the transpose of a vector (or 

a matrix). The notation in equations (28) and (29) suggests that x, y and e are treated as random 

variables, even though this may not be necessary in some of the existing methods. All interpolation 

techniques provide a means for estimating the numerical coefficients wi, either conceptually or 

statistically, whereas the statistical methods provide, in addition, information about the error. Most 

commonly, the latter information includes the expected value μe := E[e] and its standard deviation σe 

:= (Var[e])1/2. A statistical estimation in which E[e] = 0 is called unbiased and one in which the mean 

square error MSE := E[e2] = σe
2 + μe

2, is the smallest possible is called best; if both these happen, the 

estimation is called best linear unbiased estimation (BLUE). While the BLUE solution is in principle 

quite simple (see below), the estimation of its weighting factors is not always straightforward. 

Hence, several simplified statistical methods as well as empirical conceptual methods are in common 

use. Another reason that explains why such a diversity of methods has emerged is the different type 

of objects that each of the elements of the vector x represents. For instance, in temporal 

interpolation these elements can be observed values at times before and after the time of 

interpolation. In spatial interpolation, these can be simultaneously observed values for stations lying 

in the neighbourhood of the point of interpolation. Simultaneous temporal and spatial interpolation, 

although unusual, may be very useful. For example, an optimal way to infill a missing value in a time 

series at a specific time would be to include in x measurements taken in neighbouring gauges at this 

specific time, as well as measurements taken at the point of interest at preceding and subsequent 

times.  
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Let us first examine the different methods in which the estimation of y is based on a single 

observation x ≡ xi at one neighbouring (in space or time) point only. Here is a list of options, in which 

the following notation has been used: μx := E[x] and μy := E[y] are the expected values of x and y, 

respectively; σx
2 := E[(x – μx)

2] and σy
2 := E[(y – μy)

2] are the variances of x and y, respectively; σxy := 

E[(x – μx)
 (y – μy)] is the covariance of x and y; and ρxy := σxy/(σx σy) is the correlation of x and y. 

1. Equality: y = x. The single point of observation considered in this naïve type of interpolation is 

the station i nearest to the interpolation point, with x ≡ xi. As discussed below, this simple 

interpolation forms the background of the Thiessen method of spatial integration. It is 

generally biased, with bias μe = μy – μx and its MSE is σy
2 + σx

2 – 2 σxy + μe
2. However, in the 

case that the precipitation field is stationary (so that the means and variances at all points are 

equal to global parameters μ and σ2, respectively), it becomes unbiased, with MSE = 2σ
2 (1 – 

ρxy). Evidently, for ρxy < 0.5, the method results in MSE > σ2 and therefore there is no meaning 

in adopting it for low correlation coefficients (an estimate x = μ would be more skilful). 

2. Normal ratio: y = w x with w = μy / μx. This is a better alternative to the equality case, but it 

requires a sample of measurements to be available for y in order to estimate the average μy. 

This estimation is unbiased (μe = 0) but not best (MSE = σy
2 + σx

2 μy
2 / μx

2– 2 σxy μy / μx). 

3. Homogenous linear regression: y = w x with w = E[y x]/E[x2] = (σxy + μx μy) / (σx
2 + μx

2). This is a 

biased estimation (μe = μy – w μx) albeit best (MSE = σy
2 + (μy

2 σx
2 – 2 μx

 
μy σxy – σxy

2) / (μx
2 + σx

2)).  

4. Linear regression: y = w x + b with w = Cov[y x]/Var[x] = σxy / σx
2 and b = μy – w μx. This can be 

derived from equation (28) by adding an auxiliary variable whose values are always 1 (i.e. y = 

w x + b 1). It has the properties of being both unbiased and best, with MSE = σy
2 (1 – ρxy

2). 

However, it has the deficiency of potentially resulting in negative values, if b < 0, or of 

excluding values between 0 and b if b > 0. Another drawback emerges when many values of y 

are estimated in an attempt to extend a record of y based on a longer record of x. In this case, 

the resulting extended record has negatively biased variance, because the method does not 

preserve variance. To remedy this, a random error e should be added (using the probability 

distribution of e), which however is not determined in a unique manner and makes the 

method no longer best. 

5. Organic correlation: y = w x + b with w = sign[ρxy] σy / σx and b = μy – w μx. This preserves both 

mean (i.e. it is unbiased) and variance, but it is not best (MSE = 2σy
2 (1 – |ρxy|). Evidently, for 

|ρxy| < 0.5, the method results in MSE > σy
2 and therefore adopting it is pointless for low 

correlation coefficients. Similar to the standard linear regression, the organic correlation 

retains the deficiency of producing negative values or excluding some positive values. 

Coming to the interpolation based on multiple xi, in the simplest case all weights wi are assumed 

equal for all i, i.e., wi = 1/n so that y is none other than the average of xi (the arithmetic mean 

method). This simple version is used very often to fill in sparse missing values of raingauge records. 

The quantities xi could be simultaneous measurements at neighbouring points (say, within a radius 

of hundred kilometres), or at neighbouring times, or both. Here, neighbouring times should not 

necessarily be interpreted in the literal meaning, but with an emphasis on similarity of states. For 

example, a missing value of monthly precipitation in April 2000 could be estimated by, say, the 

average of the precipitation of the April months of 1998, 1999, 2001 and 2002. In another version, 



46 Treatise on Water Science 

the average of all April months with available data are used, but a local average (as we have already 

discussed in section  1.4) is preferable over an overall average, assuming that precipitation behaves 

like an HK process rather than a purely random one; this is similar to taking the average of points 

within a certain distance rather than a global average in spatial interpolation. This is not only 

intuitive but it can have a theoretical justification (D. Koutsoyiannis, personal notes), according to 

which for an HK process with H = 0.7, a local average based on 3 time steps before and 3 after the 

interpolation time is optimal (produces lowest MSE); the optimal number of points becomes 2+2 and 

1+1 for H = 0.75 and H ≥ 0.8, respectively. 

This simple method does not impose any requirement for calculation of statistical quantities for its 

application. Another method of this type, which takes account of the geographical locations and, in 

particular, the distances di between the interpolated stations, is the method of inverse distance 

weighting (IDW). In each of the basis stations it assigns weighs as  

 wi = 

d 

–b
i

∑
j = 1

k

  d 

–b
j

 (30) 

where the constant b is typically assumed to be 2.  

Among methods whose application requires statistical quantities to be known, the simplest is a 

direct extension of the normal ratio method, in which wi = (1/n) (μy/μxi
).The BLUE method itself 

belongs to this type. Initially, we can observe that a simple but biased solution for w in equation (29) 

can be easily obtained as  

 w = C –1 
η,    μe = μy – wT μx,     σe

2 = σy
2 – ηT C –1 η = σy

2 – wT
 η (31) 

where η := Cov[y, x] is the vector whose elements are the covariances of y with x (see section  1.5) 

and C := Cov[x, x] is the positive definite symmetric matrix whose elements are the covariances of 

the vector x with itself. One way to make it unbiased is to add an auxiliary variable xn + 1 whose values 

are always 1. This is the multivariate extension of the typical linear regression described in point  4 

above, and thus it retains the deficiency of potentially producing negative values or excluding some 

positive values. A better way to make it unbiased is to add a constraint μy = w
T μx (the bivariate 

analogue of this is the equality case, described in point  1 above). In the latter case, the MSE 

becomes 

 MSE = σe
2 = σy

2 + μy
2 + wT(C + μx μx

T)w – 2 wT
 (η + μy μx) (32) 

Minimization of the MSE with the above constraint using a Lagrange multiplier –2λ, results in the 

system of equations 

  C w + μx λ = η,   μx
T w = μy (33) 

whose solution for the n + 1 unknowns w1, ..., wn, λ is  

 w΄ = C΄–1 
η΄ (34) 
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where 

 w΄ := 



w 

λ 
 ,   C΄ := 



C μx 

μx
T  0

 ,  η΄ := 



η 

μy 
  (35) 

The value of the error is then calculated as 

 MSE = σe
2 = σy

2 + wT
 C w – 2 wT

 η (36) 

As seen in equations (31) and (34), the application of the method requires a number of covariances 

to be estimated (specifically, this number is (n2 + 3n)/2, given that C is symmetric). Not only does this 

restrict the method’s application to points where measurements exist, in order to estimate the 

covariances, but, when n is large, it is infeasible to reliably estimate so many parameters from data 

and to derive a positive definite C. The viable alternative is to assume a parametric stochastic model 

for the precipitation field. In the simplest case, the field could be assumed stationary and isotropic, 

where μxi
 = μy = μ, σxi

 = σy = σ and the covariance among any two points i, j is a function f of the 

geographical distance dij between these points, i.e., σij := Cov[xi, xj] = f(dij). In this case equation (35) 

simplifies to  

 C΄ := 



C  1 

 1
T  0

,  w΄ := 



w 

λ΄ 
,  η΄ := 



η 

1 
 (37) 

where λ΄ = λ μ and 1 is a vector with all its elements equal to 1. The last solution is widely known as 

kriging (although kriging is sometimes formulated not in terms of covariance as here, but in terms of 

the so-called semivariogram, a notion that is not appropriate for processes with HK behaviour). We 

can observe from equation (37) that the solution is now independent of μ, as is also the error, which 

is still calculated from equation (36). It only depends on the covariance function f(d). A function f(d) 

compatible with the HK behaviour of precipitation, as discussed in section  1.5, is of the form  

 f(d) = min(c, α d4 H – 4) (38) 

where H is the Hurst coefficient and c >> 0 and α are parameters; in particular, c violates theoretical 

consistency but has been introduced to avoid problems related to the infinite covariance for 

distance tending to zero.  

It can be observed that if the point of interpolation coincides with any one of the basis points i, then 

η is identical to one of the columns of C and η΄ is identical to one of the columns of C΄. Thus, given 

the symmetry of C and C΄, from equation (31) or (34) we obtain that w is a unit vector, i.e., all 

elements are zero except one, which will be equal to 1. This shows the consistency of the method, 

i.e. its property to reproduce the measurements at gauged points with zero error.  

All of the above methods that can interpolate at an arbitrary point (rather than only at a gauged 

one) provide a basis for numerical integration to find the average precipitation over a specific area A. 

Eventually, these methods result again in equations (28) or (29), where now y is the areal average 

precipitation. In particular, in the arithmetic mean and the normal ratio methods, because they do 

not make any assumption about the position of the point to which interpolation refers, the estimate 

y is an interpolation at any point and a spatial average, as well. The equality method works as 

follows: The geographical area of interest is divided into polygons, the so called Thiessen polygons, 
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each of which contains the points nearest to each of the stations. All points belonging to a specified 

polygon are regarded to have received a precipitation amount equal to that of the station 

corresponding to this polygon. Thus, in the integration we use either equation (28) or (29), where all 

gauged xi in the area are considered with weights wi = Ai /A, whereas Ai and A are the areas of the 

polygon corresponding to xi. The remaining methods (IDW, BLUE), can be explicitly put in the form of 

equation (29), but this is rather tedious if done analytically. A simpler alternative is to make 

interpolations to many points, for example on a dense square grid. In turn, the gridded 

interpolations could be used for integration using equal weights for all grid points (i.e. arithmetic 

mean).  

3.2 Radar estimates of precipitation 

Radio detection and ranging (RADAR) was developed at the beginning of World War II as a remote 

sensing technique to measure the range and bearing of distant objects (such as ships and airplanes) 

by means of radio echoes (e.g. Battan, 1973). Since the early 1970s, radar techniques have also been 

used for the identification (i.e. shape, size, motion and thermodynamic properties) of precipitation 

particles. The latter are weather related distributed targets, which contrary to ships and airplanes, 

have characteristics that evolve in time and depend on the atmospheric conditions.  

Because of their ability to provide estimates of areal precipitation quickly (i.e. at time intervals of 

about 5-15 min), at high resolutions (i.e. down to spatial scales of about 1 km) and over wide areas 

(i.e. with an effective range of about 200-400 km), radars have found wide application in 

atmospheric research, weather observation and forecasting (e.g. Atlas et al., 1984; Doviak and Zrnic, 

1993; Uijlenhoet, 1999, 2008; Bringi and Chandrasekar, 2001; Krajewski and Smith, 2002; Testik and 

Barros, 2007). An example is the NEXRAD (Next Generation Weather Radar) network with 159 

operational WSR-88D (Weather Surveillance Radar 88 Doppler) units (as of February 2009), deployed 

throughout the continental United States and at selected locations overseas. According to NOAA’s 

weather service (US National Oceanic and Atmospheric Administration, 2009), since its 

establishment in 1988, the NEXRAD project has provided significant improvements in severe 

weather and flash flood warnings, air traffic control and management of natural resources. 

3.2.1 Basics of radar observation and measurement 

A typical weather radar has 3 main components (Battan, 1973): (1) the transmitter, which generates 

short pulses of energy in the microwave frequency portion of the electromagnetic spectrum, (2) the 

antenna, which focuses the transmitted energy into a narrow beam and (3) the receiver, which 

receives the back-scattered radiation from distant targets that intercept the transmitted pulses.  

Some important parameters, and their range of values, that characterize the radar equipment are 

(Rogers and Yau, 1996): (1) the instantaneous power of the pulse Pt ≈ 10-103 kW (also referred to as 

peak power), (2) the duration of the pulse τ ≈ 0.1-5 μs, (3) the frequency of the signal ν ≈ 3-30 GHz, 

(4) the pulse repetition frequency (PRF) fr ≈ 200-2000 Hz, defined as the reciprocal of the time 

interval tmax that separates two distinct pulses (i.e. tmax = fr
–1

 ≈ 0.5-5 ms), and (5) the beamwidth of 

the antenna θ ≈ 1o, defined as the angular separation between points where the power of the 

transmitted signal is reduced to half of its maximum value (or equivalently 3 dB below the 

maximum). The latter is attained at the beam axis.  
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The wavelength λ of the signal is defined as the distance between two sequential crests (or troughs) 

of the electromagnetic wave and it is related to its frequency as: 

 λ ν = c  (39) 

where c = 3 × 108 m/s is the velocity of light in a vacuum. It follows from equation (39) that typical 

frequencies ν = 3-30 GHz correspond to wavelengths λ between 10 and 1 cm, but most weather 

radars operate at wavelengths λ = 3 – 10 cm (X-, C-, and S-band; see e.g. Uijlenhoet and Berne, 

2008). Shorter wavelengths are more effectively attenuated by atmospheric hydrometeors and 

precipitation particles (hence the transmitted signal has small effective range), whereas for longer 

wavelengths the back-scattered radiation from the precipitation particles does not have sufficient 

power to be detected by the receiver without noise induced by ground targets (e.g. Uijlenhoet, 

2008).  

When conducting radar observations and measurements, the direction of the target is obtained 

from the azimuth and elevation of the antenna when the returning echo is received. The range r of 

the target is calculated from the relation  

 r = c t /2 (40) 

where t is the time interval between the transmission of the pulse and the reception of the echo. If 

the target is moving, the radial velocity ur of the target (i.e. in the radar-pointing direction) can be 

obtained from the frequency shift Δν of the received relative to the transmitted signal. The 

frequency shift is caused by the Doppler effect and it is related to ur as: 

 Δv = –2ur/λ (41) 

with positive Δv being associated with targets that move toward the radar.  

If t (the time interval between transmission and reception) is larger than tmax (the reciprocal of the 

pulse repetition frequency, fr) the echo from the target will reach the receiver after a new pulse has 

been transmitted. Hence, targets that return enough energy to be detected by the receiver (see 

below) and are located at distances r > rmax = c/(2fr), will appear unrealistically close to the antenna. 

Thus, rmax is the maximum range within which targets are indicated correctly on the radar screen and 

it is usually referred to as the unambiguous range (Battan, 1973; Rogers and Yau, 1996).  

The visibility of a target by the radar depends on whether the returning signal has sufficient power Pr 

to be detected by the receiver. As an example, we consider a point target (i.e. a target with linear 

dimension smaller than about 10% of λ) with cross-section At located at distance r from the radar. 

We suppose that the radar transmits pulses with peak power Pt that propagate isotropically in space 

(i.e. in a 3-dimensional sphere). It follows from simple geometric considerations that the power Pi 

intercepted by the target is:  

 Pi = 
Pt At

4πr
2 (42) 

where 4πr
2 is the surface area of a sphere with radius r. If the transmitted signal is focused in a 

narrow beam by the antenna (as is commonly the case), equation (42) becomes  
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 Pi = G 
Pt At

4πr
2 (43) 

where G = (4π Ae)/λ
2 is a dimensionless constant called the antenna axial gain that depends on the 

characteristics (i.e. the wavelength λ) of the signal and the aperture Ae of the antenna.  

Assuming that the target scatters the intercepted signal isotropically in space, the power Pr that 

reaches the radar is: 

 Pr = 
Pi Ae

4πr
2 = G 

Pt At Ae 

(4πr
2)2  = Pt At 

λ
2 G2

(4π)3
r

4 (44) 

If the power Pr is large enough to be detected by the receiver without unwanted echoes (e.g. noise 

from ground targets) the target is visible to the radar and it is indicated on the radar screen.  

For non-isotropic scatterers, the cross-section of the target At should be replaced by the back-scatter 

cross-section σ of the target. For spherical particles with diameter D < λ/10, usually referred to as 

Rayleigh scatterers, σ can be calculated from the relation (Battan, 1973): 

 σ = 
π5 |Κ|2 

D
6

λ
4  (45) 

where |K| is the amplitude of the complex refraction index (|K|2 ≈ 0.93 for liquid water and 0.21 for 

ice), which characterizes the absorptive and refractive properties of the spherical scatterer. Due to 

the much higher value of |K|2 for liquid water relative to ice (about 4.5 times higher), the melting 

layer of ice particles in precipitation generating weather systems appears on the radar screen as a 

bright band of high reflectivity.  

3.2.2 Radar observation of distributed targets and the estimation of 

precipitation 

For a typical weather radar that operates in the C-band portion of the electromagnetic spectrum 

(λ = 3.75-7.5 cm), raindrops and snowflakes (i.e. particles with effective diameters D < 5-6 mm) can 

be approximated as Rayleigh spherical scatterers with back-scatter cross-section σ given by equation 

(45). However, there are reasons why atmospheric hydrometeors should not be treated as isolated 

point targets. One reason is that the pulse transmitted by the radar illuminates simultaneously 

numerous precipitation particles that are included in a certain volume of air V, referred to as the 

resolution volume of the radar. Hence, the returned signal contains spatially averaged information 

from the whole population of raindrops and snowflakes in V.  

For parabolic antennas, where the beam pattern is approximately the same in all directions, an 

accurate estimate of V can be obtained by assuming that the resolution volume is a cylinder with 

effective height equal to half of the pulse length l = c τ and diameter dV = r θ, i.e. the separation 

distance between points where the power of the transmitted signal is reduced to half of its 

maximum value. This gives:  

 V = π 





rθ

2

2

 
cτ

2
 (46) 
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where θ is in radians. Equation (46) assumes that all energy in the radar transmitted pulse is 

contained within the half-power beamwidth; assuming a Gaussian shape of the beam pattern, the 

denominator of (46) (and, likewise, that of (49) below) should be multiplied by a factor 2 ln 2 

(Probert-Jones, 1962). 

Another reason why raindrops and snowflakes cannot be treated as isolated point targets is their 

turbulent motion that causes the power Pr of the returned signal to fluctuate in time. To this extent, 

an accurate approximation of the time averaged power P̄r (over a sufficiently long interval of about 

10–2 s), which accounts also for multiple back-scattering cross-sections, is given by (Rogers and Yau, 

1996): 

 P̄r = Pt 
λ

2 G2

(4π)3
r

4 ∑
V

 

σ (47) 

where r is the time-averaged range of the resolution volume V, and the summation is taken over all 

σ in V. For Rayleigh scatterers, equations (45) and (47) are combined to give  

 P̄r = Pt 
π2 G2 |Κ|2

64 r4
λ

2  ∑
V

 

D
6 (48) 

Assuming homogeneity of the population of hydrometeors in V, equation (48) can be written as  

 P̄r = Pt 
π2 G2 |Κ|2

64 r4
λ

2  V ⌡⌠
0

∞

n(D)D6 
dD = Pt 

π3 G2 |Κ|2 θ2 cτ

512 r2
λ

2  Ζ = C 
|Κ|2 Z 

r
2   (49) 

where n(D) is the size distribution of precipitation particles in V (i.e. number of particles per unit 

diameter and per unit volume of air), C is the so-called radar constant that depends solely on the 

characteristics of the system under consideration, and  

 Z := ⌡⌠
0

∞

n(D)D6 
dD (50) 

is the reflectivity factor with units [Length3] that depends solely on the size distribution of the 

precipitation particles. For the Marshall and Palmer (1948) parameterization described by equation 

(24), equation (50) receives the form 

 Z = 720 n0 b
–7 (51) 

where n0 and b are the intercept and scale parameters of the exponential size distribution. For the 

expressions given in section  2.3.2 for rain and snow we obtain:  

 
(a)  Z = 296 i1.47    (rain)

(b)  Z = 3902 i2.49  (snow)
  (52) 
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where Z has units of mm6/m3 and i is the rainfall intensity (or the water equivalent of the 

accumulated snow at ground level) in mm/h.  

For rain, equation (52.a) is very close to the empirical Z-i relationships (usually referred to as Z-R 

relationships, where R ≡ i denotes the rainfall intensity) found in the literature (e.g Marshall et al., 

1955; Battan, 1973; Uijlenhoet 1999, 2001, 2008), whereas for snow there is more variability and 

equation (52.b) should be seen only as an approximation. When combined, equations (40), (49) and 

(52) allow conversion of radar measurements (i.e. P̄r, t and r) to precipitation intensity i.  

3.3 Spaceborne estimates of precipitation 

The history of observation of Earth from space started on 4 October 1957, when the Soviet Union 

successfully launched Sputnik-I, the first artificial satellite. Sputnik-I provided information on the 

density of the highest layers of the atmosphere and on the radio-signal distribution in the 

ionosphere. The first launch was immediately followed by the launch of Sputnik-II by the Soviet 

Union on 3 November 1957 and the launches of Explorer-I (1 February 1958), Vanguard-I (17 March 

1958), Vanguard-II (17 February 1959) and TIROS-I (1 April 1960) by the United States of America. 

The success of TIROS-I in surveying atmospheric conditions (in particular the cloud coverage of 

earth) opened a new era for meteorological research and development using spaceborne 

observations.  

Since the 1970s, meteorological satellites have become essential in studying the development and 

evolution of weather related phenomena over the 71% of the Earth’s surface covered by sea, where 

other types of measurements are unavailable. For example, the Tropical Rainfall Measuring Mission 

(TRMM; Simpson et al., 1988; Kummerow et al., 1998), which started on November, 1997 by the 

National Aeronautics and Space Administration (NASA) of the United States and the National Space 

Development Agency (NASDA) of Japan, has provided vast amounts of rainfall and energy estimates 

in tropical and subtropical regions and advanced the understanding and modelling of extreme 

rainfall events caused by tropical cyclones (e.g. Lonfat et al., 2004, 2007; Chen et al., 2006, 2007; 

Langousis and Veneziano, 2009a,b). TRMM data have also been used to improve the accuracy of 

high resolution weather forecasts produced by limited area models (e.g. Lagouvardos and Kotroni, 

2005) and to investigate the relationship between lighting activity, microwave brightness 

temperatures (see below) and spaceborne radar reflectivity profiles (Katsanos et al., 2007).  

We can distinguish two types of sensing by satellites, passive and active. Passive sensing is based on 

measuring the radiative intensity emitted or reflected by particles in the atmosphere, such as cloud 

droplets and hydrometeors of precipitable size. Active sensing is conducted using radar equipment 

carried by the satellite. Next we discuss some basic principles of passive remote sensing in the visible 

(V, λ ≈ 0.39-0.77 μm), infrared (IR; wavelengths λ ≈ 0.77 μm – 0.1 mm), and microwave (MW, λ ≈ 

0.1 mm – 10 cm) portions (channels) of the electromagnetic spectrum. The basic principles of 

operation of active sensors are similar to those of radars and were reviewed in section  3.2. For a 

more detailed review on the principles and techniques of remote sensing, the reader is referred to 

Barrett and Martin (1981), Elachi (1987), Stephens (1994) and Kidder and Vonder Haar (1995).  



Chapter 27: Precipitation  53 

3.3.1 The infrared signature of cloud tops 

The high absorptivity of cloud droplets in the infrared spectral range causes clouds to appear opaque 

in the IR channel. Hence, the infrared radiation received by the satellite’s radiometer originates 

mostly from the cloud tops, which can be accurately approximated as black bodies, that is, as objects 

that absorb all incident radiation and emit it at a rate that depends solely on their temperature. In 

this case, we can use Stefan-Boltzman’s law of radiation (e.g. Barrett and Martin, 1981) to calculate 

the temperature Tb of the cloud tops from the intensity J of the received IR radiation: 

 Tb = (J/σSB)1/4 (53) 

where σSB = 5.7 × 10–8 W m–2 K–4 is the Stefan-Boltzman constant and Tb is in kelvins. Tb is usually 

referred to as brightness temperature (e.g. Smith, 1993) and, for a given atmospheric lapse rate γ 

(see section  2.1), it can be used to calculate cloud top heights.  

Evidently, lower brightness temperatures Tb correspond to clouds with higher tops and larger 

probabilities of rain. Hence, we can develop regression equations to relate brightness temperatures 

to observed surface rainfall rates (e.g. Griffith et al., 1978; Stout et al., 1979; Arkin, 1979; Richards 

and Arkin, 1981; Arkin and Meisner, 1987; Adler and Negri, 1988). Two important limitations apply 

(Richards and Arkin, 1981; Liu, 2003): (1) due to the statistical character of the regressed quantities, 

the accuracy of the rainfall retrieval algorithm increases with increasing scale of spatial or temporal 

averaging, and (2) the parameters of the regression depend on the climatology of the region and, 

therefore, cannot be used at regions with different climatic characteristics. 

An example of surface rainfall estimation from IR images is the temperature threshold method 

developed by Arkin (1979), Richards and Arkin (1981) and Arkin and Meisner (1987). Arkin (1979) 

used IR imagery from the Synchronous Meteorological Satellite-1 (SMS-1) and radar data from 

Global Atmosphere Research Program (GARP)  Atlantic Tropical Experiment (GATE) to investigate the 

correlation between radar-estimated precipitation rates and the fraction of areas with brightness 

temperature Tb below a certain threshold Tmin. The study found a maximum correlation (around 0.85) 

for a brightness temperature threshold Tmin ≈ 235 K (–38oC). Richards and Arkin (1981) showed that a 

linear relationship suffices to describe the dependence between spatially averaged surface rainfall 

and the fraction of areas with Tb < 235 K, with error variance that increases with decreasing scale of 

spatial averaging. Based on these results, Arkin and Meisner (1987) suggested the use of the GOES 

(Geostationary Operational Environmental Satellite) Precipitation Index (GPI) to calculate spatial 

rainfall averages in the tropics:  

 GPI = 3 (mm/h) Fc H (54) 

where GPI is the spatially averaged rainfall accumulation in a grid box of 2.5o latitude × 2.5o 

longitude, Fc is the mean fraction (a dimensionless quantity between 0 and 1) of the grid box covered 

by brightness temperatures Tb < 235 K and H is the length of the observation period in hours.  

The temperature threshold method of Arkin (1979), Richards and Arkin (1981) and Arkin and 

Meisner (1987) produces accurate estimates of the spatially averaged rainfall in the tropical belt 

(30oS to 30oN), at grid scales larger than 2.5o ( ≈ 275 km) (Arkin and Meisner, 1987) and for averaging 

durations greater than about a month (Ba and Nicholson, 1998). The error increases significantly as 
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we move to mid-latitudes, especially during cold seasons (e.g. Liu, 2003). Extensions of the method 

include the use of the upper tropospheric humidity (UTH) in the vicinity of convective clouds as an 

additional predictive variable (Turpeinen et al., 1987), and the combination of IR and visible imagery 

(i.e. bi-spectral methods; see below) to exclude non-precipitating clouds with high tops. 

3.3.2 The visible reflectivity of clouds 

The signature of Earth in the visible (V) channel is due to the reflection of the sunlight by clouds and, 

when the sky is clear, surface features. Consequently, visible imagery is available only during daylight 

hours. Due to its shorter wavelength, visible radiation can penetrate deeper into clouds than the 

infrared portion of the electromagnetic spectrum, but similar to the infrared channel, it still 

represents the upper portion of clouds and serves as an indirect signature of surface rainfall. 

However, visible reflectivity can complement the infrared brightness temperatures to allow better 

classification of clouds and qualitative assessment of the probability of precipitation. This is the basis 

of the well known bi-spectral methods (e.g. Lovejoy and Austin, 1979; Bellon et al., 1980; Tsonis and 

Isaac, 1985; Tsonis, 1987; O’ Sullivan et al., 1990; Cheng et al., 1993; Cheng and Brown, 1995; King et 

al., 1995; Liu, 2003). 

The visible reflectivity of clouds increases fast with increasing liquid water path, i.e., the vertically 

integrated liquid water in the atmospheric column. Hence, we can use infrared brightness 

temperatures to calculate the altitude of the cloud tops and visible reflectivities to obtain a 

qualitative estimate of the vertically averaged liquid water of the cloud, which is indicative of the 

rainfall potential. For example, low brightness temperatures (i.e. cold cloud tops) and high visible 

reflectivities (i.e. thick clouds) indicate cumulonimbus formations with high probability of 

precipitation (see section  2.4.1), warm cloud tops and high visible reflectivities indicate stratiform 

rainfall (see section  2.4.2), whereas cold cloud tops and low visible reflectivies indicate cirrus clouds, 

which are usually non precipitating.  

An example of bi-spectral methods is the RAINSAT technique developed by Lovejoy and Austin 

(1979) and Bellon et al. (1980). This technique uses visible reflectivities to reduce the number of 

false alarms obtained from the IR channel and more accurately estimate surface rainfall rates. The 

RAINSAT method was developed using GOES infrared and visible imagery and radar data from 

tropical (i.e. GATE) and mid-latitude (i.e. McGill weather radar, Quebec, Canada) locations as ground 

truth. The method was optimized by Cheng et al. (1993), Cheng and Brown (1995) for the area of the 

UK, using IR and visible imagery from the European geostationary satellites Meteosat-2, Meteosat-3 

and Meteosat-4 and rainfall retrievals from 9 weather radars located in the United Kingdom and 

Ireland. A similar cloud classification technique has been proposed by Tsonis and Isaac (1985) and 

Tsonis (1987). This technique is based on cluster analysis of pixels with different brightness 

temperatures and visible reflectivities and has been developed using GOES satellite data and rainfall 

retrievals from the Woodbridge weather radar in Ontario, Canada.  

3.3.3 The microwave signature of precipitation 

Contrary to the infrared and visible spectral ranges, microwave radiation can effectively penetrate 

through cloud and rain layers and provide the signature of the integrated contribution of 

precipitation particles in the atmospheric column. Hence, brightness temperatures obtained from 
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the MW channel are better linked to surface rainfall rates than the visible reflectivites and IR 

brightness temperatures.  

The type and size of the precipitation particles detected by the microwave radiometer depends on 

the frequency of the upwelling radiation. Above 80 GHz (i.e. wavelengths λ < 3.75 mm) ice crystals 

scatter the upwelling MW radiation and fade the signature of raindrops. Hence, above 80 GHz the 

radiometer senses only ice, where lower brightness temperatures are associated with more 

scattering, larger ice particles and higher precipitation intensities at ground level.  

Below about 20 GHz (i.e. λ > 1.5 cm) the radiative intensity of raindrops dominates the microwave 

signature of hydrometeors in the atmospheric column, whereas ice particles are virtually 

transparent. Thus, below 20 GHz the microwave radiometer detects the vertically integrated 

signature of rain water, where higher brightness temperatures are associated with more intense 

rainfall at ground level. Low-frequency microwave imagery is especially useful when calculating 

surface rainfall rates over oceans, where the almost constant sea surface temperature and emissivity 

allow translation of the spatial and temporal variations of brightness temperatures to variations of 

sea-level rainfall rates (e.g. Liu, 2003). The same is not true over land, where the surface features 

cause the ground temperature and emissivity to vary significantly in space and time. Another 

limitation of low frequency microwave images is the saturation of the microwave channel at high 

rainfall rates, which causes negative biases of the obtained rainfall intensity (e.g. Liu, 2003; Viltard et 

al., 2006).  

Between 20 GHz and 80 GHz scattering and emission by raindrops and ice particles occur 

simultaneously and the microwave radiation undergoes multiple transformations. Hence, the 

microwave radiometer detects different rain paths at different microwave frequency ranges.  

Combining brightness temperatures from different MW channels to more accurately assess surface 

rainfall rates is an open research problem and it has driven the development of many rainfall 

estimation algorithms (Grody, 1991; Spencer et al., 1989; Alishouse et al., 1990; Berg and Chase, 

1992; Hinton et al., 1992; Liu and Curry, 1992, 1993; Ferriday and Avery, 1994; Petty, 1994a,b, 

2001a,b; Kummerow and Giglio, 1994a,b; Ferraro and Marks, 1995; Kummerow et al., 1996, 2001; 

Berg et al., 1998; Aonashi and Liu, 2000; Levizzani et al., 2002). For a review of microwave methods 

of estimation over ocean and land and their advantages and limitations, the reader is referred to 

Wilheit et al., (1994) and Petty (1995), and Kidd et al. (1998) respectively.  

4 Precipitation modelling 

As already clarified in section  1.5, modelling of precipitation is not possible without using any type of 

a stochastic approach. Even the deterministic numerical weather forecast models, which determine 

the state and motion in the atmosphere by solving differential equations, to model precipitation 

they use parameterization schemes. These schemes, instead of describing the detailed dynamics of 

the precipitation process, establish and use equations of statistical type to quantify the output of the 

dynamical system. In addition, as mentioned in section  1.5, the modern framework for predicting 

precipitation particularly as input to hydrological models (the ensemble forecasting) is of the Monte 

Carlo or stochastic type. The description of these stochastic techniques belongs to the sphere of 

weather forecasting and is out of the scope of this chapter. In more engineering-oriented 

applications, precipitation is typically modelled as an autonomous process, without particular 
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reference to the atmospheric dynamics. Next we outline some of the most widespread modelling 

practices for precipitation but without details and mathematical formulations, which the interested 

reader can find in the listed references.  

4.1 Rainfall occurrence 

From the early stages of the analysis of precipitation intermittency, it was recognized that the 

rainfall occurrences are not purely random. In other words, rainfall occurrence cannot be modeled 

(effectively) as a Bernoulli process in discrete time or, equivalently, as a Poisson process in 

continuous time. It should be recalled that in a Bernoulli process an event (rainfall/wet state) occurs 

with a probability p (and does not occur with probability 1 – p) constant in time, and each event is 

independent of all preceding and subsequent events. In a Poisson process the times of occurrence of 

events (i.e. the starting times of rainfalls) are random points in time. In this process the time 

differences between consecutive occurrences are independent identically distributed (IID) with 

exponential distribution.  

Both discrete time and continuous time representations of the rainfall occurrence process, which in 

fact are closely related (e.g. Foufoula-Georgiou and Lettenmaier, 1986; Small and Morgan, 1986), 

have been investigated. The most typical tool of the category of discrete time representations is the 

Markov chain model (Gabriel and Neumann, 1962; Feyerherm and Bark, 1964; Hershfield, 1970; 

Todorovic and Woolhiser, 1975; Haan et al., 1976; Chin, 1977; Katz, 1977a, b; Kottegoda and Horder, 

1980; Roldan and Woolhiser, 1982). In this model, any time interval (e.g. day) can be in one of two 

states, dry or wet, and it is assumed that the state in a time interval depends on the state in the 

previous interval.  

It was observed, however, that Markov chain models yield unsatisfactory results for rainfall 

occurrences, especially for dry intervals (De Bruin, 1980). Moreover, the interannual variance of 

monthly (or seasonal) total precipitation is greater than predicted by Markov chain models, an effect 

usually referred to as “overdispersion” (Katz and Parlange, 1998). Extended versions of the binary 

state Markov chains using a higher number of past states may improve performance. Additional 

states in such model versions have been defined based on combination of states of two consecutive 

periods (Hutchinson, 1990) or on accounting for the rainfall depth of each interval (Haan et al., 

1976). A more effective enhancement is to use transition probabilities taking into account more than 

one previous interval, which leads to stochastic binary chains of order higher than one (Pegram, 

1980; Katz and Parlange, 1998; Clarke, 1998). In more recent developments, to account for a long 

number of previous time intervals and simultaneously avoid an extremely high number of transition 

probabilities, it was proposed that, instead of the sequence of individual states of these intervals, 

one could use conditional probabilities based on aggregation of states of previous intervals (Sharma 

and O’Neill, 2002). Similarly, one could use a discrete wetness index based on the number of 

previous wet intervals (Harrold et al., 2003). An extension of the Markov chain approach to multiple 

sites has been studied by Pegram and Seed (1998). 

In a more recent study, Koutsoyiannis (2006a) used the principle of maximum entropy, interpreted 

as maximum uncertainty, to explain the observed dependence properties of the rainfall occurrence 

process, including the overdispersion or clustering behavior and persistence. He quantified 

intermittency by the probability p(1) that a time interval of length 1 h is dry, and dependence by the 

probability that two consecutive intervals are dry, i.e., by p
(2), where in general p

(k) denotes the 
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probability that an interval of length k is dry. Using these two probabilities and a multi-scale entropy 

maximization framework, he was able to determine any conditional or unconditional probability of 

any sequence of dry and wet intervals at any time scale. Thus, he described the rainfall occurrence 

process including its dependence structure at all scales using only two parameters. The dependence 

structure appeared to be non-Markovian yet not over-exponential. Application of this theoretical 

framework to the rainfall data set of Athens indicated good agreement of theoretical predictions 

and empirical data at the entire range of scales for which probabilities dry and wet can be estimated 

(from one hour to several months).  An illustration is given in Fig. 22. 
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Fig. 22 Probability dry p
(k)

 vs. scale k (in h), as estimated from a hourly rainfall data set in Athens , Greece, and 

predicted by the maximum entropy model in Koutsoyiannis (2006a) for the entire year (circles and red full line) 

and the dry season (June-September; diamonds and blue full line). The model was fitted using two data points 

in each case (marked in full in the plot), i.e. the probability dry for 1 h, p ≡ p
(1)

, and 2 h, p
(2)

, which are 

respectively  0.9440 and 0.9335 for the entire year and 0.9888 and 0.9860 for the dry season. The final model 

is expressed as p
(k)

 = p
 [1 + (ξ

 –1/η
 – 1)(k – 1)]

η

, where the parameters are respectively η =0.63 and ξ = 0.816 for 

the entire year and η = 0.83 and ξ = 0.801 for the dry season.  For comparison lines resulting from the Markov 

chain model are also plotted (dashed lines). 

In the continuous time representation of the rainfall occurrence process, the dominant tools are the 

cluster-based point processes (Waymire and Gupta, 1981a,b,c). These are essentially based on the 

prototype of the spatial distribution of galaxies devised by Neyman and Scott (1952) to describe 

their property of “clustering” relative to the Poisson process. With reference to storms, if they were 

regarded as instantaneous pulses positioned at random points in time, the logarithm of probability 

that the interarrival time exceeds a value x, or the log survival function, would be proportional to x. 

However, empirical evidence suggests that the log survival function is a nonlinear concave function 

of x, which indicates a tendency for clustering of rainfall events relative to the Poisson model 

(Foufoula Georgiou and Lettenmaier, 1986). This clustering has been modeled by a cascade of two 

Poisson processes, corresponding to two characteristic time scales of arrivals of storms and storm 

cells.  
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The Neyman-Scott process with instantaneous pulses was the first applied to rainfall occurrence 

(Kavvas and Delleur, 1981; Rodriguez-Iturbe et al., 1984), later succeeded by the Neyman-Scott 

rectangular pulses and the very similar Bartlett-Lewis rectangular pulse models (Rodriguez-Iturbe et 

al., 1987). The Bartlett-Lewis rectangular pulse model, which is the most typical and successfully 

applied model of this type, assumes that rainfall occurs in the form of storms of certain durations 

and that each storm is a cluster of random cells. The general assumptions of the rainfall occurrence 

process are:  

1. Storm origins ti occur according to a Poisson process with rate λ.  

2. Origins t
ij
 of cells of each storm i arrive according to a Poisson process with rate β.  

3. Arrivals of each storm i terminate after a time vi exponentially distributed with parameter γ.  

4. Each cell has a duration wij exponentially distributed with parameter η.  

In the original version of the model, all model parameters are assumed constant. In a modified 

version, the parameter η is randomly varied from storm to storm with a gamma distribution with 

shape parameter α and scale parameter ν. Subsequently, parameters β and γ also vary so that the 

ratios κ := β / η and φ := γ / η are constant.  

A major problem of these models was their inability to reproduce the probability of zero rainfall at 

multiple time scales (Velghe et al., 1994). In this respect, Foufoula-Georgiou and Guttorp (1986) 

noted that the Neyman-Scott model parameters are scale dependent and thus cannot be attributed 

a physical meaning. To ameliorate this, modifications of both the Neyman-Scott model (Entekhabi et 

al., 1989) and the Bartlett-Lewis model (Rodriguez-Iturbe et al., 1988; Onof and Wheater, 1993, 

1994) were proposed. These are in fact based on the randomization of the mean interarrival time of 

one of the two Poisson processes. Evaluation and comparison of several cluster-based rectangular 

pulse models for rainfall were done by Velghe et al. (1994) and Verhoest et al. (1997), whereas a 

comprehensive review of Poisson-cluster models has been provided by Onof et al. (2000). An 

extension of the concept introducing a third Poisson process was proposed by Cowpertwait et al. 

(2007). 

4.2 Rainfall quantity 

In the discrete time representations of rainfall occurrence, the rainfall quantity in each wet interval 

is modelled separately from the occurrence process, usually based on statistical analysis of the 

observed record. In the point process representations, the storms and cells are abstract quantities 

that do not fully correspond to real-world objects. Therefore, they cannot be identified in the 

recorded time series. An assumption is typically made that each cell has a uniform intensity xij with a 

specified distribution, and based on all assumptions, the statistical characteristics of the rainfall 

process at one or more time scales are derived analytically (Rodriguez-Iturbe et al., 1987, 1988). 

These statistical characteristics are compared to the empirically derived statistics and, by minimizing 

the departures of the two, the model parameters are estimated. The distribution of the uniform 

intensity xij is typically assumed to be exponential with parameter 1 / μx. Alternatively, one can 

choose a two-parameter gamma distribution with mean μx and standard deviation σx. In this 

manner, the point process models describe the entire rainfall process, including occurrence and 
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quantity. A demonstration of the model is shown in Fig. 23. However, in some cases (e.g. Gyasi-Agyei 

and Willgoose, 1997) point processes have been used to simulate merely rainfall occurrences and 

then have been combined with other models that simulate rainfall depths. Other modelling 

approaches for the rainfall process (including its intermittency) are reviewed in Srikanthan and 

McMahon (2001).  
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Fig. 23 Simulated realization of a series of four storms from the Bartlett-Lewis rectangular pulse model 

(modified version with randomly varying η) occurring within three days (notice the overlap of storms 1 and 2, 

which is allowed by the model), implemented by the Hyetos software (see section  4.4). The model parameters 

are λ = 0.94 d
-1

, κ = β/η = 1.06, φ = γ/η = 0.059, α  = 2.70, ν = 0.0068 d
-1

, and μx = σx = 24.3 mm/d.  

With their typical assumptions, including those of the exponential or gamma distribution for rain cell 

amount, the point process models, despite providing satisfactory representation of the process at a 

specific time scale or a small range of time scales, cannot really perform satisfactorily over a wide 

range of scales and also lead to exponential distribution tails, whereas it has been recently 

recognized that the tails must be of power type (see sections  1.5 and  5.2). Generally, the distribution 

function of rainfall varies among different time scales. At very fine scales, the density is J-shaped, 

i.e., with a mode at zero, and perhaps with density tending to infinity as the rainfall depth or the 

intensity tends to zero. At coarse time scales such as monthly (for wet months) and annual, the 

distribution becomes bell-shaped and tends to normal as the scale increases. However, its tail 

always departs from the exponential tail of the normal distribution. In fact, for theoretical reasons, if 

at the right tail the survival function is a power function of the rainfall depth or intensity x, with 

exponent 1/κ, i.e., F*(x) ∝ x–1/κ (see equation (18)), then it will be of the same type and will have 

precisely the same exponent 1/κ at any time scale (the proof is omitted). This behaviour of the tail is 

perhaps the only invariant distributional property across all scales, whereas the shape of the body of 

the distribution varies significantly across different scales. However, even this variation must have a 

simple and unique explanation, which is the principle of maximum entropy. Specifically, 

Koutsoyiannis (2005a) has shown that all diverse shapes of the distribution across different scales 

can be derived from the principle of maximum entropy constrained on known mean and variance.  

Papalexiou and Koutsoyiannis (2008) proposed a single distribution (a power-transformed beta 

prime distribution, also known as generalized beta of 2nd kind; see also Koutsoyiannis, 2005a) with 

four parameters, which provides good fits for rainfall intensity at time scales from hourly to annual. 

Only one of the four parameters (corresponding to the exponent of the tail) is invariant across 
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scales. If the range of scales of interest is smaller, then specific special cases of this distribution can 

be used as good approximations. For example the three-parameter Burr type VII distribution, which 

has the advantage of providing a closed form of the quantile function, can be used effectively for 

time scales from a few minutes to a couple of months (Papalexiou and Koutsoyiannis, 2009).  

4.3 Space-time models 

Space-time modelling of precipitation is one of the most demanding tasks of stochastic modelling in 

hydrology and geophysics. Rainfall intermittency should be modelled in both space and time, along 

with the motion of rainfall fields, the rainfall quantity and its temporal and spatial structure. One of 

the relatively simple solutions has been provided by the extension of point process models used for 

the rainfall process at a single site. This extension introduces a description of rainfall cells in space, in 

addition to that in time, and a motion of the cells. As an example, we summarize here the Gaussian 

displacement spatial-temporal rainfall model (GDSTM; Northrop, 1996, 1998). This model, is a 

spatial analogue of a point process model having a temporal structure similar to that of the Bartlett-

Lewis rectangular pulse model described above and a spatial structure known as the Gaussian 

displacement structure, introduced by Cox and Isham (1988). 

Similar to its single-site analogue, GDSTM assumes that rainfall is realized as a sequence of storms, 

each consisting of a number of cells. Both storms and cells are characterized by their centers, 

durations and areal extents (see sketch in Fig. 24) and, in addition, cells have certain uniform rainfall 

intensity. Specifically, the following assumptions characterize storms and cells. 

Rainfall cells

Storm area

Storm centre

 

Fig. 24  Sketch of the spatial structure of the Gaussian displacement spatial-temporal rainfall model.  

Storm centers arrive according to a homogeneous Poisson process of rate λ in two-dimensional 

space (denoted by x, y) and time (denoted by t) and move with a uniform velocity (Vx, Vy). Each 

storm has a finite duration L (assumed exponentially distributed with parameter β = 1 / μL) and an 

infinite areal extent, represented by an elliptical geometry with eccentricity ε and orientation θ, and 

incorporates a certain number of rainfall cells. However, a storm can be assigned a finite “storm 

area”, the area that contains a certain percentage of rainfall cells. The storm area varies randomly 

and in each storm is determined in terms of the realization of a random variable w, which 
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determines uniquely (for the specific storm) a set of parameters σx
2, σy

2 and ρ that determine the 

displacement of cell centers from the storm center. Specifically, w is Gamma-distributed with shape 

and scale parameters determined in terms of the eccentricity ε and the mean storm area μs. At the 

same time, the parameter ρ is determined in terms of the eccentricity ε and the storm orientation, 

θ. Following the generation of w, the parameters σx
2 and σy

2 are determined in terms of the 

eccentricity ε, the storm orientation θ, and the value of w. 

Each rainfall cell is assigned a center (xc, yc, tc). The time origin tc follows a Poisson process starting at 

the time ordinate of the storm origin t0 (with the first cell being located at this point) and ending at t0 

+ L. The expected number of cells within that time interval is μc = 1 + β / γ, where γ is the cell 

generation Poisson process parameter. The spatial displacements from the storm center are random 

variables jointly normally distributed with zero means, variances σx
2 and σy

2, and correlation ρ. Given 

these parameters, the displacement Δx of each cell is generated as a normal variate (0, σx) and the 

displacement Δy as a normal variate (μy|x, σy|x). Furthermore, each cell has a finite duration D 

(assumed exponentially distributed with parameter 1 / μD) and an elliptical area with major axis a, 

forming an angle θ with the x axis (west-east), and minor axis b = 1 – ε2 a. It is assumed that a is a 

random variable gamma distributed with shape and scale parameters depending on the mean storm 

area μΑ and the eccentricity ε, respectively. Finally, each cell has an intensity x independent of any 

other variable, exponentially distributed with parameter 1 / μx. 

The model is defined in terms of 11 independent parameters, namely: (1) the rate of storm arrival 

(number of storms per area per time), λ; (2) the mean cell duration, μD; (3) the mean storm duration, 

μL; (4) the mean cell area, μA; (5) the mean storm area, μs; (6) the mean number of cells per storm, 

μc; (7) the mean cell intensity, μx; (8 and 9) the components of the cell and storm velocity in the x 

direction (east), Vx, and in the y direction (north), Vy; (10) the cell and storm eccentricity, ε; and (11) 

the cell and storm orientation, θ. 

Similar to its single-point analogue, the entities of the spatial point process model are abstract. To 

make the model outputs comparable to reality, integration from continuous time over a specific 

time scale and/or spatial scale is needed, from which the first and second order rainfall statistics are 

calculated. The latter serve as the basis for parameter estimation using either rain gauge or radar 

data. Due to model complexity the calculation of the statistics can be done only numerically; hence 

the entire model application (and the parameter estimation in particular, which needs numerical 

optimization, e.g. using the generalized reduced gradient method) is laborious.  

4.4 Rainfall disaggregation and downscaling 

Both disaggregation and downscaling refer to the generation of a precipitation field at a specific 

temporal and/or spatial scale given a known precipitation field (measured or simulated) at a certain 

larger temporal and/or spatial scale (lower resolution). Disaggregation and downscaling are very 

useful procedures and have several applications, such as in the following cases. 

1. Global-scale weather prediction models provide rainfall forecasts at a low resolution, e.g. grid 

size of 50 km. Hydrologic models require the description of the precipitation field at a much 

higher resolution, with grid size of the order of 1 km.. 
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2. Satellite precipitation estimates are available at a spatial scale greater than or equal to 0.25° 

(latitude and longitude), or about 28 km at the equator, and a temporal scale of 3 h. Again 

hydrologic applications require higher resolutions. 

3. The majority of historical point rainfall records come from daily raingauges which have often 

been operational for several decades. The number of raingauges providing hourly or sub-

hourly resolution data is smaller by about an order of magnitude. However, hydrologic 

applications, especially flood studies, usually need hourly or even sub-hourly data. 

4. In complex problems of stochastic generation of precipitation time series or precipitation 

fields, it is difficult to reproduce simultaneously the long-term and the short-term stochastic 

structure of precipitation using a single model. A better approach is to couple several models, 

starting from a large-scale model to represent the long-term behaviour. The outputs of the 

latter are then disaggregated into finer scales. Note, however, that in a recent study Langousis 

and Koutsoyiannis (2006) developed a stochastic framework capable of reproducing 

simultaneously the long-term and the short-term stochastic structure of hydrological 

processes, avoiding the use of disaggregation.   

While disaggregation and downscaling are similar in nature, they also have a difference that 

distinguishes them. Downscaling aims at solely producing a precipitation field y with the required 

statistics at the scale of interest, being statistically consistent with the given field x at the finer scale. 

Disaggregation demands full and precise consistency, which introduces an equality constraint in the 

problem of the form 

 C y = x (55) 

where C is a matrix of coefficients. For example, assuming that x is an annual amount of 

precipitation at a station and y is the vector consisting of the twelve monthly precipitation values at 

the same station, C will be a row vector with all its elements equal to 1, so that equation (55) 

represents the requirement that the sum of all monthly precipitation amounts must equal the 

annual amount.  

Task 1 could be accomplished by running a second meteorological model at the limited area of 

interest. Such models, known as limited-area models, can have much higher resolution than global 

models. The description of this type of downscaling, known as dynamical downscaling because it is 

based on the atmospheric dynamics, is out of the scope of this chapter. In contrast, a stochastic 

procedure need not refer to the dynamics, and is generic and appropriate for both downscaling and 

disaggregation and for all above tasks 1-4. This generic procedure resembles the interpolation 

procedure described in section  3.1.3, but there are two important differences. First, it is necessary to 

include the error terms in the generation procedure (recall that in interpolation, which is a point 

estimation, knowing only the mean and variance of the error was sufficient). Second, the generated 

values y at the different points should be statistically consistent to each other. This precludes the 

separate application of an algorithm at each point of interest and demands simultaneous generation 

at all points. In turn, this demands that the error terms in different points should be correlated to 

each other. All these requirements could be summarized in the linear generation scheme,  

 y = A x + B v (56) 
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where A and B are matrixes of coefficients and v is a vector of independent random variables, so 

that the term B v =: e corresponds to the error term in interpolation (cf. (29)). In disaggregation, 

equation (56) should be considered simultaneously with equation (55).  

For Gaussian random fields without intermittency, the application of equations (55) and (56) is 

rather trivial. However, the intermittency of the rainfall processes and the much skewed 

distributions at fine time scales are severe obstacles for rainfall disaggregation. To overcome such 

obstacles, several researchers have developed a plethora of rather ad hoc disaggregation models 

(see review by Koutsoyiannis, 2003b). However, the application of the above theoretically consistent 

scheme is still possible, if combined with a stochastic model accounting for intermittency (e.g. a 

Bartlett-Lewis model) and if an appropriate strategy is used to implement equation (55). Such a 

strategy includes recursive application of equation (56) until the error in equation (55) becomes 

relatively low, and is followed by correction of the error of the accepted final iteration by 

appropriate adjusting procedures, which should not alter the covariance structure of the 

precipitation field. The general strategy of stochastic disaggregation is described in Koutsoyiannis 

(2001) and two implementations for temporal rainfall disaggregation at a fine (hourly) scale at a 

single site and at multiple sites are described in Koutsoyiannis and Onof (2001) and Koutsoyiannis et 

al. (2003), respectively. The models described in the latter two papers, named Hyetos and MuDRain, 

respectively, are available on line (www.itia.ntua.gr/en/software/) and have been used in several 

applications worldwide. Typical results of the two models are shown in Fig. 25 and Fig. 26, 

respectively.  
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Fig. 25 Typical screens produced by the Hyetos software during disaggregation of daily to hourly rainfall data, 

where plots in green and red refer to disaggregated and original data respectively. Upper left panel shows 

typical hyetographs, where the green (disaggregated) plot is the result of the storms shown in Fig. 23 

converted to a hyetograph at an hourly scale. Notice that while daily totals match, the temporal distribution of 

rainfall differs in the disaggregated and original hyetographs. However, in statistical sense the disaggregated 

series resemble the original, as shown in the other panels compare statistics of disaggregated and original 

series.  
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Fig. 26 While, as shown in Fig. 25 (upper left panel), in single-variate disaggregation, the produced hyetographs 

resemble the actual ones only in a statistical sense, multivariate disaggregation reproduces the actual shapes 

of hyetographs provided that fine scale (e.g. hourly) data exist in at least one of the stations. The two panels 

show a comparison of historical (marked H) and simulated (by the MuDRain disaggregation model; marked S) 

hyetographs at a day with relatively high rainfall (~16mm) at two raingauges (2 and 5) in the Brue catchment 

located in South-Western England (redrawn from Koutsoyiannis et al., 2003).  

4.5 Multifractal models 

Rainfall models of multifractal type have for a long time been known to accurately reproduce several 

statistical properties of actual rainfall fields in finite but practically important ranges of scales: 

typically from below 1 hour to several days in time and from below 10 km to more than 100 km in 

space (Schertzer and Lovejoy, 1987; 1989; Tessier et al., 1993; Fraedrich and Larnder, 1993; Olsson, 

1995; Lovejoy and Schertzer, 1995, Over and Gupta, 1996; Carvalho et al., 2002; Nykanen and Harris, 

2003; Kundu and Bell, 2003; Deidda et al. 2004, 2006; Gebremichael and Krajewski, 2004; Calenda et 

al., 2005; Gebremichael et al., 2006; Veneziano and Langousis, 2005; García-Marín et al., 2007; 

Langousis and Veneziano, 2007). These properties include the scaling of the moments of different 

orders (Schertzer and Lovejoy, 1987; Menabde et al., 1997; Deidda et al., 1999, Deidda, 2000), the 

power law behavior of spatial and temporal spectral densities (Olsson, 1995; Tessier et al., 1996; 

Deidda et al., 2004, 2006), the alteration of wet and dry intervals (Over and Gupta, 1996; Schmitt et 

al., 1998; Olsson, 1998; Güntner et al., 2001; Langousis and Veneziano, 2007) and the distribution of 

extremes (Hubert et al., 1998; Veneziano and Furcolo, 2002; Veneziano and Langousis, 2005; 

Langousis and Veneziano, 2007; Langousis et al., 2007, Veneziano et al., 2009). Significant deviations 

of rainfall from multifractal scale invariance have also been pointed out. These deviations include 

breaks in the power-law behavior of the spectral density (Fraedrich and Larnder, 1993; Olsson, 1995; 

Menabde et al., 1997), lack of scaling of the non-rainy intervals in time series (Schmitt et al., 1998), 

differences in scaling during the intense and moderate phases of rainstorms (Venugopal et al. 2006), 

the power deficit at high-frequencies relative to multifractal models (Perica and Foufoula-Georgiou, 

1996a,b; Menabde et al., 1997; Menabde and Sivapalan, 2000), and more complex deviations as 

described in Veneziano et al. (2006a). 

Next we review some basic properties of stationary multifractal processes and discuss a simple 

procedure to construct discrete multifractal fields based on the concept of multiplicative cascades. 
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For a detailed review on the generation of multifractal processes and their applications in 

hydrological modelling and forecasting, the reader is referred to Veneziano and Langousis (2010).  

Let i(d)(t) be the average rainfall intensity averaged over time scale d at time t. The stochastic process 

i
(d)(t) is said to be stationary multifractal if, for any time scale d, its statistics remain unchanged when 

the time axis is contracted by a factor r > 1 and the intensity is multiplied by a random variable ar, 

that is 

 i
(d/r)(t) = 

d
    ar i

(d)(t)   (57) 

where = 
d
   denotes equality in (any finite-dimensional) distribution. The notation implies that the 

distribution of ar depends only on r and not on time t or the intensity i(d). Obviously, the mean of ar is 

1 and furthermore ar is assumed to be stochastically independent from i(d) at the higher scale d. The 

distribution of ar characterizes the scaling properties as well as many other characteristics of the 

rainfall process including the marginal distribution, intermittency, distribution of extremes etc. 

Equation (57) need not apply for arbitrarily large time scales but rather applies up to a maximum 

scale d = dmax. In rainfall, dmax seems to be of the order of several days and it is representative of the 

mean interarrival time of rainfall events (Langousis and Veneziano, 2007; Langousis et al., 2007; 

Veneziano et al., 2007). We note for comparison that the related equation in the simple scaling (HK) 

representation of section  1.5 is (i(d/r) – 
μ) = 

d
   r1 – H (i(d) – 

μ) or i(d/r) = 
d
   μ(1 – 

r
1 – H) + r1 – H 

i
(d)

 , so that, when the 

HK process has zero mean, it can be viewed as a special case of the multifractal process in which the 

random variable ar is replaced by a deterministic power function of the resolution r.  

A property of stationary multifractal processes, which has been used to verify multifractality, is that 

the spectral density s(ω) behaves like ω
–b where ω is the frequency, and b < 1 is a constant (e.g. 

Fraedrich and Larnder, 1993; Olsson, 1995, Deidda et al., 2004; Hsu et al., 2006). More 

comprehensive checks of multifractality involve the dependence of statistical moments of different 

orders on scale. In particular, under perfect multifractality E[(i(d))q] ∝ E[(ar)
q] ∝ d–K(q) ∝ rK(q), where 

K(q) is a convex function, usually referred to as “moment scaling function” (Gupta and Waymire, 

1990; Veneziano, 1999). All concepts and methods are readily extended to space-time rainfall 

(Veneziano et al., 2006b).  

A simple procedure to construct discrete stationary multifractal fields is based on iterative 

application of equation (57) starting from a large time scale d ≤ dmax and gradually decreasing the 

time scale (i.e. at resolutions r ∝ mn, where m > 1 and n ≥ 1 are integers). The contraction by the 

same factor r = m at each step simplifies generation, since only the distribution of ar ≡ am is needed. 

This forms the concept of so-called isotropic discrete multiplicative cascade. Its construction in the 

D-dimensional cube SD starts at level 0 with a single “tile” Ω01
 ≡ SD with constant unit intensity inside 

Ω01
. At level n = 1, 2, … (or equivalently at resolutions r = mD, m2D, …) each “tile” at the previous level 

n – 1 is partitioned into m
D “tiles” where m > 1 is the integer multiplicity of the cascade. The 

intensity inside each cascade “tile” Ωni
 (i = 1, …, mnD) is obtained by multiplying that of the parent 

“tile” at level n – 1 by an independent copy yi of a unit-mean random variable y, called the generator 

of the cascade. Clearly, for r = mnD, ar = y1 y2 …yn. For illustration, Fig. 27 shows a simulated realization 

of a 2-dimensional binary (i.e. m = 2) discrete multiplicative cascade developed to level n = 8. 
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Fig. 27 Simulated realization of a 2-dimensional stationary multifractal field. The random variable y is taken to 

be lognormal with unit mean value and log-variance (σlny)
2
 = 0.2 ln(2). 

5 Precipitation and engineering design 

5.1 Probabilistic vs. deterministic design tools 

The design and management of flood protection works and measures requires reliable estimation of 

flood probability and risk. A solid empirical basis for this estimation can be offered by flow 

observation records with an appropriate length, sufficient to include a sample of representative 

floods. In practice, however, flow measurements are never enough to support flood modelling. The 

obvious alternative is the use of hydrologic models with rainfall input data to generate streamflow. 

Notably, even when flow records exist, rainfall probability still has a major role in hydrological 

practice; for instance in major hydraulic structures the design floods are estimated from 

appropriately synthesised design storms (e.g. US Department of the Interior, Bureau of Reclamation, 

1977, 1987; Sutcliffe, 1978). The need to use rainfall data as the basis of hydrologic design becomes 

even more evident in the study of engineering structures and urban water management systems 

that modify the natural environment, so that past flood records, even if they exist, are no longer 

representative of the future modified system. 

Hydrologic design does not necessarily require full modelling of the rainfall process, of the type 

discussed in section  4. Usually, in design studies, the focus is on extreme rainfall, which, notably, 

may not be represented well in such models, which are better for the “average” behaviour of 

rainfall. However, historically, the perception of intense rainfall and the methodologies devised to 

model it have suffered from several fallacies spanning from philosophical to practical issues, which 

we describe next to cast a warning against their acceptance and use.  

The first fallacy is of a rather philosophical type. As discussed in section  1.5, the modelling of the 

rainfall process in pure deterministic terms has been proven to be problematic. However, 

deterministic thinking in science is strong enough, so that after the failure in providing full 

descriptions, it was headed to determining physical bounds to precipitation in an attempt to design 

risk-free constructions or practices. The resulting concept of probable maximum precipitation (PMP), 
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that is, an upper bound of precipitation that is physically feasible (World Meteorological 

Organization, 1986), is perhaps one of the biggest failures in hydrology. Using elementary logic we 

easily understand that even the terminology is self-contradictory, and thus not scientific. Namely, 

the word “probable” contradicts the existence of a deterministic limit. 

Several methods to determine PMP exist in literature and are described in World Meteorological 

Organization (1986). However, examination in depth of each of the specific methods separately will 

reveal that they are all affected by logical inconsistencies. While they are all based on the 

assumption of the existence of a deterministic upper limit, they determine this limit statistically. This 

is obvious in the so called “statistical approach” by Hershfield (1961, 1965), who used 95 000 

station-years of annual maximum daily rainfall belonging to 2645 stations, standardized each record 

and found the maximum over the 95 000 standardized values. Naturally, one of the 95 000 

standardized values would be the greatest of all others, but this is not a deterministic limit to call 

PMP (Koutsoyiannis, 1999). If one examined 95 000 additional measurements one might have found 

an even higher value. Thus the logical problem here is the incorrect interpretation that an observed 

maximum in precipitation is a physical upper limit. 

The situation is perhaps even worse with the so-called moisture maximization approach of PMP 

estimation (World Meteorological Organization, 1986), which seemingly is more physically 

(hydrometeorologically) based than the statistical approach of Hershfield. In fact, however, it suffers 

twice by the incorrect interpretation that an observed maximum is a physical upper limit. It uses a 

record of observed dew point temperatures to determine an upper limit, which is the maximum 

observed value. Then it uses this "limit" for the so called "maximization" of an observed sample of 

storms, and asserts the largest value among them as PMP. Clearly, this is a questionable statistical 

approach, because (a) it does not assign any probability to the value determined and (b) it is based 

only on one observed value (known in statistics as the highest order statistic), rather than on the 

whole sample, and thus it is enormously sensitive to one particular observation of the entire sample 

(Papalexiou and Koutsoyiannis, 2006; Koutsoyiannis, 2007). Thus, not only does the determination of 

PMP use a statistical approach (rather than deterministic physics), but it uses bad statistics. The 

arbitrary assumptions of the approach extend beyond the confusion of maximum observed 

quantities with physical limits. For example, the logic of moisture maximization at a particular 

location is unsupported given that a large storm at this location depends on the convergence of 

atmospheric moisture from much greater areas. 

Rational thinking and fundamental philosophical and scientific principles can help identify and dispel 

such fallacies. In particular, the Aristotelian notions of potentia (Greek ‘dynamis’) and of potential 

infinite (Greek ‘apeiron’; Aristotle, Physics, 3.7, 206b16) that “exists in no other way, but ... 

potentially or by reduction” (and is different from mathematical complete infinite) would help us to 

avoid the PMP concept. In fact, this does not need a great deal of philosophical penetration. The 

same thing is more practically expressed as “conceptually, we can always imagine that a few more 

molecules of water could fall beyond any specified limit” (Dingman, 1994). Yet the linkage to the 

Aristotelian notions of potentia and potential infinity may make us more sensitive in seeing the 

logical inconsistencies (see also Koutsoyiannis, 2007).  

According to Popper (1982) the extension of the Aristotelian idea of potentia in modern terms is the 

notion of probability. Indeed, probability provides a different way to perceive the intense rainfall 
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and flood and to assign to each value a certain probability of exceedence (see next session) avoiding 

the delusion of an upper bound of precipitation and the fooling of decision makers that they can 

build risk free constructions. In this respect the criticism of the PMP and the probable maximum 

flood (PMF) involves logical, technical, philosophical and ethical issues (e.g. Benson, 1973). 

One typical argument against the use of probabilistic approaches, in favour of PMP, which is very old 

yet popular even today, has been stated by Horton (1931; from Klemes, 2000), “It is, however, 

important to recognize the nature of the physical processes involved and their limitations in 

connection with the use of statistical methods. … Rock Creek cannot produce a Mississippi River 

flood any more than a barnyard fowl can lay an ostrich egg”. However, this argument reveals an 

incorrect perception of probability and statistics. In a probability theoretic context there is not a 

logical inconsistency. Assuming, for example that the annual peak flood of the Mississippi river (xM) 

is on the average (μM), a million times larger than the average (μC) flood of a certain small creek (xC), 

and assuming that both xM and xC have a lognormal distribution with standard deviation σlnx of 

logarithms of about 0.3 (which is roughly equal to the coefficient of variation of the annual flood 

peaks, assumed equal in the two streams), one can readily find that the probability that the flood in 

the creek xC in some year exceeds the mean annual flood μM of Mississippi is Φ*(ζ) := 1 – ΦG(ζ) 

where ΦG is the standard normal distribution function and ζ = ln(μM/μC)/σlnx or ζ = ln(106)/0.3 = 46. 

For large ζ, the approximation ln Φ*(ζ) = –(1/2)[ln(2πζ
2) + ζ

2] holds (e.g. Abramowitz and Stegun, 

1965), hence ln Φ*(ζ) = –1062.75, so that the probability of exceedence is Φ*(ζ) = 10–462. That is, 

according to the probabilistic approach, the return period of the event that the small creek flood 

matches or exceeds the mean annual flood of the Mississippi is 10462 years. Assuming that the age of 

the universe is of the order of 1010 years, one would wait, on the average, 10452 times the age of the 

universe to see this event happen—if one foolishly hoped that the creek, the Mississippi and the 

Earth would exist for such a long time. Evidently, such a low probability could be regarded as 

synonymous to impossibility, which shows that the probabilistic approach does not regard the floods 

of Mississippi equivalent to those of a small creek (see also an example about the age of a person by 

Feller, 1950).  

5.2 Extreme rainfall distribution 

Having being exempted from the concept of an upper limit to precipitation and having adopted a 

probabilistic approach, the real problem is how the rainfall intensity grows as the probability of 

exceedence decreases. Clearly, as the probability of exceedence tends to zero, the intensity tends to 

infinity. There exists a mathematically proven lower limit to the rate of this growth, which is 

represented by an exponential decay of the probability of exceedence with intensity. The alternative 

is a power low decay and, as already mentioned in section  1.5, the two options may lead to 

substantial differences in design quantities for high return periods. In this respect, the most 

important questions, which have not received definite answers yet, are again related to the notion 

of infinity.  

Accordingly, the distribution tails are important to know in engineering design. However, the study 

of the tails is difficult and uncertain because the tails refer to infrequent events that require very 

long records to appear. Traditionally, rainfall records are analyzed in two ways. The most frequent is 

to choose the highest of all recorded precipitation intensities (for a given averaging time scale) at 

each year and form a statistical sample with size equal to the number of years of the record. The 
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other is to form a sample with all recorded intensities over a certain threshold irrespectively of the 

year they occurred. Usually the threshold is chosen high enough, so that the sample size is again 

equal to the number of years of the record. This however is not necessary: it can well be set equal to 

zero, so that all recorded intensities are included in the sample. However, the threshold simplifies 

the study and helps focus the attention on the distribution tail.  

If x1, x2, …, xn are random variables representing the recorded average intensities within a year at 

nonoverlapping time periods equal to a chosen time scale d, then the maximum among them y := 

max(x1, x2, …, xn) has a distribution function Hn(y) fully dependent on the joint distribution function 

of xi. Assuming that xi are IID with common distribution function F(x), then Hn(x) = [F(x)]n. If n is not 

constant but rather can be regarded as a realisation of a random variable (corresponding to the fact 

that the number of rainfall events is not the same in each year) with Poisson distribution with mean 

ν, then the distribution function H becomes (e.g. Todorovic and Zelenhasic, 1970; Rossi et al., 1984), 

 H(x) = exp{–ν[1 – F(x)]} (58) 

In particular, if the threshold has been chosen with the above rule (to make the sample size equal to 

the number of years of the record) then obviously ν = 1. Equation (58) expresses in a satisfactory 

approximation the relationship between the above two methodologies and the respective 

distributions F and H. The two options discussed above are then represented as follows: 

1. Exponential tail  

 F(x) = 1 – exp (–x/λ + ψ),     H(x) = exp[–exp (–x/λ + ψ)],    x ≥ λψ (59) 

where λ > 0 and ψ > 0 are parameters, so that λψ represents the specified threshold. Here F is the 

exponential distribution and H is the Gumbel distribution, also known as extreme value type I (EV1) 

distribution. 

2. Power tail  

 F(x) = 1 – 




1 + κ







x

λ
 – ψ

–1/κ

,  H(x) = exp








–




1 + κ







x

λ
 – ψ

–1/κ

,    x ≥ λψ (60) 

where λ > 0, ψ > 0 and κ > 0 are parameters and λψ represents the specified threshold. Here F is the 

generalized Pareto distribution (a generalized form of equation (18)) and H is the generalized 

extreme value (GEV) distribution. In the case κ > 0 considered here, GEV is also called the extreme 

value type II (EV2) distribution. The case κ < 0 is mathematically possible and is called the extreme 

value type III (EV3) distribution. However, this is inappropriate for rainfall as it puts an upper bound 

(λψ) for x, which is inconsistent. The case κ = 0, corresponds precisely to the exponential tail 

(exponential and Gumbel distributions). 

For years the exponential tail and the Gumbel distribution have been the prevailing models for 

rainfall extremes, despite the fact that they yield unsafe (the smallest possible) design rainfall values. 

Recently, however, their appropriateness for rainfall has been questioned. Koutsoyiannis (2004a, 

2005a, 2007) discussed several theoretical reasons that favour the power/EV2 over the 

exponential/EV1 case. As already mentioned (section  1.5.5), Koutsoyiannis (2004b, 2005a) compiled 

an ensemble of annual maximum daily rainfall series from 169 stations in the Northern Hemisphere 
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(28 from Europe and 141 from the USA) roughly belonging to six major climatic zones and all having 

lengths from 100 to 154 years. The analysis provides sufficient support for the general applicability 

of the EV2 distribution model worldwide. Furthermore, the ensemble of all samples was analysed in 

combination and it was found that several dimensionless statistics are virtually constant worldwide, 

except for an error that can be attributed to a pure statistical sampling effect. This enabled the 

formation of a compound series of annual maxima, after standardization by the mean, for all sta-

tions (see Fig. 13, which shows the distribution of a compound sample over threshold of all stations, 

except one in which only annual maxima existed). The findings support the estimation of a unique κ 

for all stations, which was found to be 0.15.  

Additional empirical evidence with the same conclusions is provided by the Hershfield’s (1961) data 

set, which was the basis of the formulation of Hershfield’s PMP method. Koutsoyiannis (1999) 

showed that this data set does not support the hypothesis of an upper bound in precipitation, that is 

PMP. Rather it is consistent with the EV2 distribution with κ = 0.13, while the value κ = 0.15 can be 

acceptable for that data set too (Koutsoyiannis, 2004b). This enhances the trust that an EV2 

distribution with κ = 0.15 can be regarded as a generalized model appropriate for mid latitude areas 

of the Northern Hemisphere.  

In a recent study, Veneziano et al. (2009) used multifractal analysis to show that the annual rainfall 

maximum for time scale d can be approximated by a GEV distribution and that typical values of κ lie 

in the range 0.09 to 0.15 with the larger values being associated with more arid climates. This range 

of values agrees well with the findings of Koutsoyiannis (1999, 2004b, 2005a). Similar results were 

provided by Chaouche (2001) and Chaouche et al. (2002). Chaouche (2001) exploited a data base of 

200 rainfall series of various time steps (month, day, hour, minute) from the five continents, each 

including more than 100 years of data. Using multifractal analyses it was found that (a) an 

EV2/Pareto type law describes the rainfall amounts for large return periods; (b) the exponent of this 

law is scale invariant over scales greater than an hour (as we stated in section  4.2, it cannot be 

otherwise because this is dictated by theoretical reasons); and (c) this exponent is almost space 

invariant. Other studies have also expressed scepticism for the appropriateness of the Gumbel 

distribution for the case of rainfall extremes and suggested hyper-exponential tail behaviour. Coles 

et al. (2003) and Coles and Pericchi (2003) concluded that inference based on a Gumbel distribution 

model fitted to the annual maxima may result in unrealistically high return periods for certain 

observed events and suggested a number of modifications to standard methods, among which is the 

replacement of the Gumbel model with the GEV model. Mora et al. (2005) confirmed that rainfall in 

Marseille (a raingauge included in the study by Koutsoyiannis, 2004b) shows hyper-exponential tail 

behaviour. They also provided two regional studies in the Languedoc-Roussillon region (south of 

France) with 15 and 23 gauges, for which they found that a similar distribution with hyper-

exponential tail could be fitted. This finding, when compared to previous estimations, leads to a 

significant increase in the depth of rare rainfall. On the same lines, Bacro and Chaouche (2006) 

showed that the distribution of extreme daily rainfall at Marseille is not in the Gumbel law domain. 

Sisson et al. (2006) highlighted the fact that standard Gumbel analyses routinely assign near-zero 

probability to subsequently observed disasters, and that for San Juan, Puerto Rico, standard 100-

year predicted rainfall estimates may be routinely underestimated by a factor of two. Schaefer et al. 

(2006) using the methodology by Hosking and Wallis (1997) for regional precipitation-frequency 
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analysis and spatial mapping for 24-hour and 2-hour durations for the Washington State, USA, found 

that the distribution of rainfall maxima in this State generally follows the EV2 distribution type. 

5.3 Ombrian relationships 

One of the major tools in hydrologic design is the ombrian relationship, more widely known by the 

misnomer rainfall intensity-duration-frequency (IDF) curve. An ombrian relationship (from the Greek 

‘ombros’, rainfall) is a mathematical relationship estimating the average rainfall intensity i over a 

given time scale d (sometimes incorrectly referred to as duration) for a given return period T  (also 

commonly referred to as frequency, although  “frequency” is generally understood as reciprocal to 

“period”). Several forms of ombrian relationships are found in the literature, most of which have 

been empirically derived and validated by the long use in hydrologic practice. Attempts to give them 

a theoretical basis have often used inappropriate assumptions and resulted in oversimplified 

relationships that are not good for engineering studies.  

In fact, an ombrian relationship is none other than a family of distribution functions of rainfall 

intensity for multiple time scales. This is because, the return period is tied to the distribution 

function, i.e., T = δ / [1 – F(x)], where δ is the mean interarrival time of an event that is represented 

by the variable x, typically 1 year. Thus, a distribution function such as one of those described in 

section  4.2, is at the same time an ombrian relationship. This has been made clear in Koutsoyiannis 

et al. (1998) who showed that the empirical considerations usually involved in the construction of 

ombrian curves are not necessary at all and create difficulties and confusion.  

However, the direct use in engineering design of a fully consistent multiscale distribution function 

may be too complicated. Simplifications are possible to provide satisfactory approximations, given 

that only the distribution tail is of interest and that the range of scales of interest in engineering 

studies is relatively narrow. Such simplifications, which were tested recently and were found to be 

reasonable (Papalexiou and Koutsoyiannis, 2009) are:  

1. The separability assumption, according to which the influences of return period and time scale 

are separable (Koutsoyiannis et al., 1998), i.e.,  

 i(d, T) = a(T) / b(d)  (61) 

 where a(T) and b(d) are mathematical expressions to be determined. 

2. The use of the Pareto distribution for the rainfall intensity over some threshold at any time 

scale, as discussed in section  5.2; this readily provides a simple expression for a(T).  

3. The expression of b(d) in the simple form 

 b(d) = (1 + d/θ)η  (62) 

where θ > 0 and η > 0 are parameters. A justification of this relationship, which is a 

satisfactory approximation for time scales up to a few days, can be found in Koutsoyiannis 

(2006a). 

Based on assumptions 1-3, we easily deduce that the final form of the ombrian relationship is 
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 i(d, T) = λ΄ 
(T/δ)κ – ψ΄

(1 + d/θ)η  (63) 

where ψ΄ > 0, λ΄ > 0 and κ > 0 are parameters. In particular, as discussed in section  5.2, κ is the tail-

determining parameter and unless a long record exists, which could support a different value, it 

should be assumed κ = 0.15. Equation (63) is dimensionally consistent, provided that θ has units of 

time (as well as δ), λ΄ has units of intensity, and κ and ψ are dimensionless. The numerator of 

equation (63)  differs from a pure power law that has been commonly used in engineering practice, 

as well as in some multifractal analyses. Consistent parameter estimation techniques for ombrian 

relationships have been discussed in Koutsoyiannis et al. (1998) as well as in Chapter 46, “Statistical 

Hydrology”, of this volume. 
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