
What is MuDRain (Multivariate disaggregation of rainfall)?# $ K 

MuDRain is a methodology for spatial-temporal disaggregation of rainfall. It involves the 

combination of several univariate and multivariate rainfall models operating at different time 

scales in a disaggregation framework that can appropriately modify outputs of finer time scale 

models so as to become consistent with given coarser time scale series. 

Potential hydrologic applications include enhancement of historical data series and 

generation of simulated data series. Specifically, the methodology can be applied to derive 

spatially consistent hourly rainfall series in raingages where only daily data are available. In 

addition, in a simulation framework, the methodology provides a way to take simulations of 

multivariate daily rainfall (incorporating spatial and temporal non-stationarity) and generate 

multivariate fields at fine temporal resolution. 
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Why disaggregation? #  $ K 

A common problem in hydrological studies is the limited availability of data at 

appropriately fine temporal and/or spatial resolution. In addition, in hydrologic simulation 

studies a model may provide as output a synthetic series of a process (such as rainfall and 

runoff) at a coarse scale while another model may require as input a series of the same 

process at a finer scale. Disaggregation techniques therefore have considerable appeal due 

to their ability to increase the time or space resolution of hydrologic processes while 

simultaneously providing a multiple scale preservation of the stochastic structure of 

hydrologic processes. 
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Why multivariate disaggregation? #  $ K 

The multivariate approach to rainfall disaggregation is of significant practical interest even in 

problems that are traditionally regarded as univariate. Let us consider, for instance, the 

disaggregation of historical daily raingage data into hourly rainfall. This is a common situation 

since detailed hydrological models often require inputs at the hourly time scale. However, 

historical hourly records are not as widely available as daily records. An appropriate 

univariate disaggregation model would generate a synthetic hourly series, fully consistent with 

the known daily series and, simultaneously, statistically consistent with the actual hourly 

rainfall series. Obviously, however, a synthetic series obtained by such a disaggregation 

model could not coincide with the actual one, but would be a likely realization. Now, let us 

assume that there exist hourly rainfall data at a neighboring raingage. If this is the case and, 

in addition, the cross-correlation among the two raingages is significant (a case met very 

frequently in practice), then we could utilize the available hourly rainfall information at the 

neighboring station to generate spatially and temporally consistent hourly rainfall series at 

the raingage of interest. In other words, the spatial correlation is turned to advantage since, in 

combination with the available single-site hourly rainfall information, it enables more realistic 

generation of the synthesized hyetographs. Thus, for example, the location of a rainfall event 

within a day and the maximum intensity would not be arbitrary, as in the case of univariate 

disaggregation, but resemble their actual values. 

                                                      
# Why_multivariate_disaggregation 
$ Why multivariate disaggregation? 
K Disaggregation;multivariate, usefulness 



Problem formulation #  $ K 

 

CASE 1 
We assume that we are given: 

 

1. an hourly point rainfall series at point 1, as a result of either: 

 measurement by an autographic device (pluviograph) or digital sensor 

 simulation with a fine time scale point rainfall model such as a point process 

model,  

 simulation with a temporal point rainfall disaggregation model applied to a 

series of known daily rainfall (e.g. using Hyetos, a computer program for 

temporal rainfall disaggregation using adjusting procedures);  

2. several daily point rainfall series at neighboring points 2, 3, 4, 5, … as a result of 

either: 

 measurement by conventional raingages (pluviometers with daily 

observations), or 

 simulation with a multivariate daily rainfall model. 

 

We wish to produce series of hourly rainfall at points 2, 3, 4, 5, …, so that: 

 

1. their daily totals equal the given daily values; and 

2. their stochastic structure resembles that implied by the available historical data.  

 

 We emphasize that in this problem formulation we always have an hourly rainfall series at 

one location, which guides the generation of hourly rainfall series at other locations. If this 

hourly series is not available from measurements, it can be generated using appropriate 

univariate simulation models  

 The essential statistics that we wish to preserve in the generated hourly series are:  

 

1. the means, variances and coefficients of skewness;  

2. the temporal correlation structure (autocorrelations); 

3. the spatial correlation structure (lag zero cross-correlations); and 

4. the proportions of dry intervals.  

 

 If the hourly data set at location 1 is available from measurement, then all these statistics 

apart from the cross-correlation coefficients can be estimated at the hourly time scale using 

this hourly record. To transfer these parameters to other locations, spatial stationarity of the 
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process can be assumed. The stationarity hypothesis may seem an oversimplification at first 

glance. However, it is not a problem in practice since possible spatial nonstationarities 

manifest themselves in the available daily series; thus the final hourly series, which are forced 

to respect the observed daily totals, will reflect these nonstationarities.  

 

CASE 2 
If hourly rainfall is available at several (more than one) locations, the same modeling 

strategy described below can be used without any difficulty with some generalizations of the 

computational algorithm. In fact, having more than one point with known hourly information 

would be advantageous for two reasons. First, it allows a more accurate estimation of the 

spatial correlation of hourly rainfall depths (see discussion below) or their transformations. 

Second, it might reduce the residual variance of the rainfall process at each site, thus allowing 

for generated hyetographs closer to the real ones. 

If more than one rainfall series are available at the hourly level, at least one cross-

correlation coefficient of hourly rainfall can be estimated directly from these series. Then, by 

making plausible assumptions about the spatial dependence of the rainfall field an expression 

of the relationship between cross-correlation could be established (see Estimation of 

crosscorrelation coefficients.) 



Modeling approach #  $ K 

Models involved 

a. Models for the generation of multivariate fine-scale outputs. The first category includes 

two models that provide the required output (the hourly series). 

The first model is a the simplified multivariate rainfall modelof hourly rainfall that can 

preserve the statistics of the multivariate rainfall process and, simultaneously, incorporate the 

available hourly information at site 1, without any reference to the known daily totals at the 

other sites. The statistics considered here are the means, variances and coefficients of 

skewness, the lag-one autocorrelation coefficients and the lag-zero cross-correlation 

coefficients. All these represent statistical moments of the multivariate process. The 

proportion of dry intervals, although considered as one of the parameters to be preserved, 

is difficult to incorporate explicitly. However, it can be treated by an indirect manner . 

The second model is a  transformation model that modifies the series generated by the first 

model, so that the daily totals are equal to the given ones. This uses a (multivariate) 

transformation, which does not affect the stochastic properties of the series. 

  

b. Models associated with inputs to a. above. The second category contains models which 

may optionally be used to provide the required input, should no observed series be available. 

These may include 

 a multivariate daily rainfall model for providing daily rainfall depths, such as the 

general linear model (GLM) [Chandler and Wheater, 1998a, b];  

 a single-site model for providing hourly depths at one location such as the Bartlett-

Lewis rectangular pulses model [Rodriguez-Iturbe et al., 1987, 1988; Onof and 

Wheater, 1993, 1994]; 

 a single-site disaggregation model to disaggregate daily depths of one location into 

hourly depths [e.g. Koutsoyiannis and Onof, 2000, 2001]. 

 Such models may be appropriate to operate the proposed disaggregation approach for 

future climate scenarios. 
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Estimation of cross-correlation coefficients #  $ K 

We assume that we are given: 

1. several hourly point rainfall series at points 1,2,3 as a result of measurement by 

an autographic device (pluviograph) or digital sensor, 

2. several daily point rainfall series at neighboring points 4, 5, 6, 7,8 … as a result of 

measurement by conventional raingages (pluviometers with daily observations) 

We are able to estimate the cross-correlation coefficients between the raingages 1,2,3 at the 

hourly time scale and those between 1,2,…,8 at the daily time scale. 

We need to estimate the cross-correlation coefficients between all raingages at the hourly 

time scale. 

For this purpose we use the empirical relationship:  mijij rr dh   

where: 

h

ijr  is the cross-correlation coefficient between raingages i and j at the hourly time scale 

d

ijr  is the cross-correlation coefficient between raingages i and j at the daily time scale  

m is an exponent that can be estimated by regression using the known cross-correlation 

coefficients at the hourly and daily time scale or, in case no hourly data is available, its value 

can be assumed approximately in  the range 2 to 3.(Fytilas P. 2002) 
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The simplified multivariate rainfall model #  $ K 

For n locations, we may assume that the simplified multivariate rainfall model is an AR(1) 

process, expressed by  

Xs = a Xs – 1 + b Vs (1) 

where Xs :=  Tn
s

2
s

1
s X,...,X,X represents the hourly rainfall at time (hour) s at n locations, a and 

b are (n  n) matrices of parameters and Vs (s = …, 0, 1, 2, …) is an independent identically 

distributed (iid) sequence of size n vectors of innovation random variables (so that the 

innovations are both spatially and temporally independent). The time index s can take any 

integer value. Xs are not necessarily standardized to have zero mean and unit standard 

deviation, and obviously they are not normally distributed. On the contrary, their distributions 

are very skewed. The distributions of Vs are assumed three-parameter Gamma. 

Equations to estimate the model parameters a and b and the moments of Vs directly from the 

statistics to be preserved are given for instance by Koutsoyiannis [1999] for the most general 

case. In the special case examined here, for convenience, the parameter matrix a is assumed 

diagonal, which suffices to preserve the essential statistics, and is given by: 

      nlXVarXXCovdiaga l
s

l
s

l
s ,....,1,/, 11     (2) 

The parameter matrix b is determined from 

     ssssss
T aXXCovaXXCovbb 11,,   (3) 

 If b is assumed lower triangular, which facilitates handling of the known hourly rainfall at site 

1, then it can be determined from b b
T
 using Cholesky decomposition.  

Another group of model parameters are the moments of the auxiliary variables Vs. The first 

moments (means) are obtained by  

      ss XEaIbVE  1  (4) 

where I is the identity matrix. The variances are by definition 1, i.e., Var[Vs] = [1, …, 1]
T
 and 

the third moments are obtained in terms of μ3[Xs], the third moments of Xs, by  

        ss XaIbV 3
)3(1)3(

3  


 (5) 

where a
(3)

 and b
(3)

 denote the matrices whose elements are the cubes of a and b, respectively 

At the generation phase, Vs 

 1
, the first component of Vs, is calculated from the series of 1

sX  

rather than generated. Given that b is lower triangular, its first row will have only one nonzero 

item, call it b1, so that from (1) 
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1
s

11
1s

11
s VbXaX     (6) 

which can be utilized to determine 1
sV  This can be directly expanded to the case where 

several gages of hourly information are available provided that b is lower triangular. 

Alternatively, the model can be expressed in terms of some nonlinear transformations 


sX of 

the hourly depths Xs (see Specific difficulties), in which case (1) is replaced by 

sbVaXX 1ss  


   (7) 



The transformation model #  $ K 

Transformations that can modify a series generated by any stochastic process to satisfy 

some additive property (i.e. the sum of the values of a number of consecutive variables be 

equal to a given amount), without affecting the first and second order properties of the 

process, have been studied previously by Koutsoyiannis [1994] and Koutsoyiannis and 

Manetas [1996]. These transformations, more commonly known as adjusting procedures, 

are appropriate for univariate problems, although they can be applied to multivariate problems 

as well, but in a repetition framework. More recently, Koutsoyiannis [2001] has studied a true 

multivariate transformation of this type and also proposed a generalized framework for 

coupling stochastic models at different time scales.  

This framework, specialized for the problem examined here, is depicted in the following 

schematic representation where Xs and Zp represent the “actual” hourly- and daily-level 

processes, related by  

  


pk

1)k(ps
ps ZX                                                                    (8) 

 
 
where k is the number of fine-scale time steps within each coarse-scale time step (24 for the 

current application), sX
~

 and pZ
~

 denote some auxiliary processes, represented by the 

simplified rainfall model in our case, which also satisfy a relationship identical to (8). 
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The problem is: Given a time series zp of the actual process Zp, generate a series xs of the 

actual process Xs. To this aim, we first generate another (auxiliary) time series sx~  using the 

simplified rainfall process sX
~

. The latter time series is generated independently of zp and, 

therefore, sx~  do not add up to the corresponding zp, as required by the additive property (8), 

but to some other quantities, denoted as pz~ . Thus, in a subsequent step, we modify the 

series sx~  thus producing the series xs consistent with zp (in the sense that xs and zp obey 

 


pk

1)k(ps ps ZX  (8)) without affecting the stochastic structure of sx~ . For this modification 

we use a so-called coupling transformation, i.e., a linear transformation, f( sX
~

 , pZ
~

, Zp ) 

whose outcome is a process identical to Xs and consistent to Zp. 

Let   TT
pk

T
kpp XXX ,...,11

*
  be the vector containing the hourly values of the 24 hours of any 

day p for all examined locations (i.e., the 24 vectors Xs for s = (p – 1)k + 1 to s = pk; for 5 

locations, *
pX contains 24  5 = 120 variables). Let also  TT

kp
T
p

T
pp XZZZ )1(1

* ,,   be a vector 

containing  

(a) the daily values Zp for all examined locations,  

(b) the daily values Zp + 1 of the next day for all locations, and  

(c) the hourly values X(p – 1)k of the last hour of the previous day p – 1 for 

all locations. 

This means that for 5 locations *
pZ  contains 3  5 = 15 variables in total. Items (b) and (c) of 

the vector *
pZ  were included to assure that the transformation will preserve not only the 

covariance properties among the hourly values of each day, but the covariances with the 

previous and next days as well. Note that at the stage of the generation at day p the hourly 

values of day p – 1 are known (therefore, in *
pZ we enter hourly values of the previous day) 

but the hourly values of day p + 1 are not known (therefore, in *
pZ we enter daily values of the 

next day, which are known). In an identical manner, we construct the vectors *
pX

~
 and *

pZ
~

 

from variables sX
~

 and pZ
~

 . 

 Koutsoyiannis [2001] showed that the coupling transformation sought is given by  

         **** ~
hX

~
X pppp ZZ                                                             (9)  

where 

                     1**** ,,X


 pppp ZZCovZCovh                                                   (10) 

The quantity  ** ~
h pp ZZ    in  (9) represents the correction applied to X

~
 to obtain X. Whatever 

the value of this correction is, the coupling transformation will ensure preservation of first and 

second order properties of variables (means and variance-covariance matrix) and linear 



relationships among them (in our case the additive property 


pk

1)k(ps ps ZX ). However, it is 

desirable to have this correction as small as possible in order for the transformation not to 

affect seriously other properties of the simulated processes (e.g., the skewness). It is possible 

to make the correction small enough, if we keep repeating the generation process for the 

variables of each period (rather than performing a single generation only) until a measure of 

the correction becomes lower that an accepted limit. This measure can be defined as 

    x
*
p

*
p mσ/Z

~
ZhΔ                                  (11) 

where m is the common size of *
pX  and *

pX
~

, σX is standard deviation of hourly depth 

(common for all locations due to stationarity assumption) and ||.|| denotes the Euclidian norm..  

Given the daily process Zp and the matrix h, which determines completely the 

transformation, the steps followed to generate the hourly process Xs are the following: 

1. Use the simplified rainfall model (1) or (8) to produce a series sX
~

for all hours of the current 

day p and the next day p + 1, without reference to Zp.  

2. At day p evaluate the vectors *
pZ  and *

pZ
~

using the values of Zp and sX
~

of the current and 

next day, and Xs of the previous day. 

3. Determine the quantity  ** ~
h pp ZZ   and the measure of correction Δ. If Δ is greater than an 

accepted limit Δm, repeat steps 1-3 (provided that the number of repetitions up to the current 

repetition has not exceeded a maximum allowed number rm, which is set to avoid unending 

loops). 

4.Apply the coupling transformation to derive *
pX of the current period. 

5.Repeat steps 1 and 4 for all periods. 



Specific difficulties #  $ K 

 Here we describe how to handle the peculiarities of the rainfall process at a fine time scale in 

the multivariate modeling scheme.  

Negative values. The negative values, unavoidably generated by any linear stochastic model 

when the coefficient of variation is high (possibly in a high proportion but with low values), are 

not a major problem in our case. They are simply truncated to zero, thus having a beneficial 

effect in preserving the proportion of dry intervals (as also shown in next paragraph). A 

negative effect is the fact that truncation may be a potential source of bias to statistical 

properties that are to be preserved. Specifically, it is anticipated to result in overprediction of 

cross-correlations, as it is very probable that negative values are contemporary.  

Dry intervals. As already mentioned, the proportion of dry intervals cannot be preserved by 

linear stochastic models in an explicit manner. However, after rounding off the generated 

values, a significant number of zero values emerges, which is added to the significant number 

of zero values resulting from the truncation of negative values. The total percentage of zero 

values resulting this way can be comparable to (usually somewhat smaller than) the historical 

probability dry. It was demonstrated that we can match exactly the historical probability dry by 

slightly modifying the rounding-off rule. For the multivariate case, the following technique was 

found effective: A proportion π0 of the very small positive values, chosen at random among 

the generated values that are smaller than a threshold l0 (e.g., 0.1-0.3 mm), are set to zero. 

 An alternative technique, based on a two-state (wet-dry) representation of hourly rainfall 

within a rainy day, can be also used. According to this technique, at periods when the known 

hourly time series indicates dry condition (zero depth) the unknown hourly time series are 

stimulated, with a specified probability φ0, to take zero depth as well.  

Preservation of skewness. Although the coupling transformation preserves the first and 

second order statistics of the processes, it does not ensure the preservation of third order 

statistics. Thus, it is anticipated that it will result in underprediction of skewness. However, the 

repetition technique (see transformation model) can result in good approximation of 

skewness.  

Homoscedasticity of innovations. By definition, the innovations Vs in the simplified 

multivariate rainfall model (see the simplified multivariate rainfall model) are 

homoscedastic, in the sense that their variances are constant, independent of the values of 

rainfall depths Xs. Therefore, if, for instance, we estimate (or generate) the value at location 2, 

given that at location 1, we assume that the conditional variance is constant and independent 

of the value at location 1. This, however, does not comply with reality: by examining 

simultaneous hyetographs at two locations we can observe that the variance is larger during 

the periods of high rainfall (peaks) and smaller in periods of low rainfall (heteroscedasticity). 
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As a result of this inconsistency, synthesized hyetographs will tend to have unrealistically 

similar peaks. To mitigate this problem we can apply a nonlinear transformation to rainfall 

depths 

  

The first candidate nonlinear transformation is the logarithmic one,  

 ζXlnX ss    (12) 

with constants ζ > 0, where the logarithmic transformation should be read as an item to item 

one. The stationarity assumption allows considering all items of vector ζ equal to a constant ζ. 

This transformation would be an appropriate selection if ζ was estimated so that the 

transformed series of known hourly depths have zero skewness, in which case the 

transformed variables could be assumed to be normally distributed. Then, preservation of first 

and second order properties of the untransformed variables is equivalent to preservation of 

first- and second-order statistics of the transformed variables [Koutsoyiannis, 2001]. However, 

evidence from the examined data sets shows that the skewness of the transformed variables 

increases with increasing ζ and it still remains positive even if very small ζ are chosen. This 

means that the lognormal assumption is not appropriate for hourly rainfall.  

  

A second candidate is the power transformation  

 m
ss XX   (13) 

where the symbol (m) means that all items of the vector Xs are raised to the power m (item to 

item) where 0 < m < 1. The stationarity assumption complies with the assumption that m is 

the same for all items. The preservation of the statistics of the untransformed variables does 

not necessarily lead to the preservation of the corresponding statistics of the transformed 

variables. However, the discrepancies are expected to be low if m is not too low (e.g., for 

m0.5).  
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Main Form #  $ K 

This is the main form of MuDRain. Use the on-screen hints of toolbar buttons displayed by 
placing and pausing the mouse pointer on them. 
Here is a summary of toolbar buttons description: 

The other forms of the software application Options form, the Graphs form and the Help 
About form appear by clicking the appropriate buttons of this form, whereas the Visual 
output form appears after opening an information file; see Input files format 
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Options form#  $ K 

Activate this form by pressing the appropriate button in the Main form. 
The program offers three categories of options that must be specified by the user (for 
justification of these options see specific difficulties:  
(a) the use or not of repetition in the generation phase,  
(b) the use or not of one of the transformations and  
(c) the use or not of the two-state representation of hourly rainfall.  
 
In case of the adoption of each of these options, the user must specify some additional 
parameters for the generation, which are:  
for (a), the maximum allowed distance Δm and the maximum allowed number of 
repetitions rm (see transformation model); 
 for (b) the transformation constant ζ or m (as defined in equation (12) or (13), respectively 
see specific difficulties ); and  
for (c) the probability φ0, to stimulate dry state in each of the locations. Two additional 
parameters are used, which are related to the rounding off rule of generated hourly depths, 
i.e. the proportion π0 and the threshold l0.  
 
In the current program configuration, the options and the additional parameters must be 
specified by the user in a trial-and-error manner, i.e., starting with different trial values until 
the resulting statistics in the synthetic series match the actual ones. This can be seen as a 
fine-tuning of the model, which is manual. An automatic fine-tuning procedure, based on 
stochastic optimization, seems to be possible but has not been studied so far.  
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Graphs form#$K 

Activate this form by pressing the appropriate button in the Main form. 

Use this form, after performing the disaggregation, to visualize the graphical comparisons of 
historical and simulated statistics of hourly rainfall 

To zoom in any of the graphs, drag on the region of interest downwards. To zoom out, drag 
on any region within the graph upwards. To move along the graph drag to the desired 
direction with the right mouse button pressed. 

Using the Copy button, a graph is copied into the clipboard and can then be pasted to 
anywhere else (e.g. word processing programs etc.). 
 
 
 
 

 
 
 

                                                      
# Graphs_form 
$ Graphs form 
K Graphs form; Form, graphs 



Visual output form#$K 

This form appears automatically when opening an information file (see Input files format). 
The content of the form, results of the disaggregation, statistics etc., which are printed 
during the program execution, can be saved in a text file (use the file menu) or copied to the 
clipboard (press Ctrl-C).  

 
 
 

                                                      
# Visual_output_form 
$ Visual output form 
K Visual output form; Form, Visual output 



Input files format#$K 

File input.dat : 
 
This is a text file that must be defined using the program Main form in order for the program 
to perform the disaggregation. The contents of the file are described below: 
 
 

 

1.00 0.72 0.48 0.73 0.74 0.76 0.74 0.73 

0.72 1.00 0.57 0.75 0.85 0.82 0.65 0.77 

0.48 0.57 1.00 0.52 0.48 0.59 0.52 0.55 

0.73 0.75 0.52 1.00 0.89 0.93 0.51 0.96 

0.74 0.85 0.48 0.89 1.00 0.87 0.50 0.88 

0.76 0.82 0.59 0.93 0.87 1.00 0.57 0.94 

0.74 0.65 0.52 0.51 0.50 0.57 1.00 0.52 

0.73 0.77 0.55 0.96 0.88 0.94 0.52 1.00 
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daily.inp 

hourly.inp 

First header line stating respectively the number of 

daily and hourly rainfall time series and the number 

of days to be disaggregated. 

Cross correlation coefficient 

matrix at hourly time scale 

Names of files containing daily 

and hourly information 

 
For the estimation of the unknown hourly crosscorrelation coefficients see related 

topic: (Estimation of crosscorrelation coefficients .) 

 
 
File daily.inp: This is a text file containing the historical daily rainfall depths. In the current 

example we are considering 8 gages; historical hourly rainfall depths are available at gages 

1,2,3 and historical daily rainfall depths are available for all gages.(The available hourly 

rainfall depths must be consistent with the daily rainfall depths of the same period). 

                                                      
# Input_files_format 
$ Input files format 
K input; rainfall depths; crosscorrelation coefficients matrix 



 

0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0 

0       0       0       0     0.2       0       0       0 

0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0 

0     0.2       0       0       0       0       0       0 

0     0.2       0       0     0.2       0       0       0 

0     0.2       0       0     0.4       0       0       0 

0       0       0       0       0       0       0       0 

0     0.2       0       0     0.2       0       0     0.2 

0     0.2       0     0.2     0.2       0       0       0 

0       0       0       0       0       0       0       0 

 

 

 

 

 

 

Historical daily rainfall depths for raingages i , 

j, k, (in which historical hourly rainfall depths 

are also available from measurements) 

 

Historical daily rainfall depths for raingages 

n, m…,    

 
 
File hourly.inp: : This is a text file containing the historical hourly rainfall depths available (3 
in this example) 

 
       0       0       0 

       0       0       0 

       0       0       0 

       0       0       0 

     7.4     5.8       0 

     4.2     1.8       0 

     3.8     2.4       0 

       2     1.4       0 

     0.4     0.8       0 

     0.2       0       0 

       0       0       0 

       0       0       0 

 

 
 
Caution: The daily and hourly input files must be compatible, e.g. the first entry of first 
column of daily file must equal the sum of the first 24 entries of the first column of 
hourly file, etc. Otherwise, the results of the program will be meaningless. 



Output file format#$K 

 
Press the appropriate button on the toolbar of the Main form to save the hourly (in case of 

disaggregation of daily to hourly) or daily time series (in case of aggregation of hourly to 

daily). 

The output file is a text file that contains the produced hourly rainfall depths in several 

columns each one representing one raingage. 

 

  0         0         0         0       0.1         0         0       0.1  

  0         0         0         0       0.1         0         0       0.1  

  0         0         0         0         0         0         0       0.1  

  0         0         0       1.4       0.8       0.8       3.3       1.1  

  0         0         0       0.7       0.4       0.4       1.5       0.6  

  0         0         0       0.4       0.2         0       0.7       0.3  

  0         0         0       0.3         0       0.1       0.3       0.2  

  0         0         0         0         0         0       0.1       0.1  

  0         0         0       0.2         0         0       0.6       0.1  

7.4       5.8         0       7.1       6.9       5.6       4.9       5.1  

4.2       1.8         0       2.5       2.4       2.3       2.7       2.3  

3.8       2.4         0       2.6       2.7       2.4       2.5       2.5  

  2       1.4         0       1.5       1.6       1.3       1.3       1.4  

0.4       0.8         0       0.6       0.7       0.5       0.3       0.6  

0.2         0         0         0         0         0         0       0.1  

 

 

                                                      
# Output_file_format 
$ Output file format 
K Output file format 
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