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Virtually, all areas of hydrology have been deeply influenced by the 
concepts of fractality and scale invariance. The roots of scale 
invariance in hydrology can be traced to the pioneering work of 
Horton, Shreve, Hack and Hurst on the topology and metric properties 
of river networks and on river flow. This early work uncovered 
symmetries and laws that only later were recognized as manifestations 
of scale invariance. Le Cam, who in the early 1960s pioneered the 
development of multi-scale pulse models of rainfall, provided renewed 
impetus to the use of scale-based models. Fractal approaches in 
hydrology have become more rigorous and widespread since 
Mandelbrot systematized fractal geometry and multifractal processes 
were discovered. This chapter reviews the main concepts of fractality 
and scale invariance, the construction of scale-invariant processes, their 
properties, and the inference of scale invariance from data. We 
highlight the recent developments in four areas of hydrology: rainfall, 
fluvial erosion topography, river floods, and flow through porous 
media. 

1. Introduction 

This chapter deals with fractal methods and their importance in 
hydrology. By fractal methods, we mean models, analysis and inference 
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procedures that emphasize scale invariance, which is the property that an 
object reproduces itself under some scale-change transformation. 

Like other forms of invariance (invariance under translation called 
stationarity; invariance under translation, rotation, and reflection called 
isotropy), invariance under a change of scale is a fundamental property 
that entities like sets, functions, or measures may have. When they do, 
this form of invariance often sheds light on the genesis of the 
phenomenon, reduces the complexity of models and their inference, and 
allows one to devise special methods to upscale/downscale, characterize 
extremes, make predictions, etc. Our interest in scale invariance stems 
from this deep understanding and richness of applications. 

In the physical world, scale invariance rarely manifests itself as a 
deterministic property, whereby an object is made of exact scaled 
replicas of itself. Rather, nature displays variability that is generally best 
described through stochastic models. For this reason, here we deal 
exclusively with random objects that are scale-invariant in the sense that 
their probability laws (their ensemble statistical properties) do not 
change under certain scale-change transformations. Specific realizations 
of the object are not expected to display deterministic scale invariance. 

Even in the limited context of hydrology, the use of scale invariance 
has grown very significantly over the years, making it difficult to provide 
a comprehensive coverage in book-chapter form. Entire books (e.g. 
Rodriguez-Iturbe and Rinaldo1) exist on just specific application areas. 
This rapid growth, together with the fact that the authors are more 
intimately familiar with certain areas, necessarily results in a personal 
topic selection and presentation style. The material itself is often drawn 
from our previous publications.  

This review emphasizes stochastic (random process) approaches to 
scale invariance. For an alternative approach through chaos theory, see 
Barnsley2 and for applications of scale-invariant chaotic models in 
hydrology see, for example, Puente and Obregón3 and Puente and 
Sivakumar4.  

Sections 2, 3, and 4 contain introductory material: Section 2 deals 
with fractal and scale-invariant sets, their fractal dimension, and 
generation. Section 3 presents various scale-invariance conditions for 
random processes (ordinary functions and generalized functions or 
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measures), drawing a distinction between self-similarity and 
multifractality. Section 4 is devoted to the characterization and 
generation of scale-invariant processes, including their relationship with 
stationary processes and their generation as renormalization limits of 
other processes or as weighted sums of processes at different scales. 
Deviations from exact scaling are briefly covered at the end of Section 4. 
Section 5 deals with basic properties of scale-invariant processes. Some 
properties, such as moment scaling, hold irrespective of whether the 
process is stationary or not, whereas other properties (e.g. marginal 
distributions, extremes) are more specific to stationary random measures; 
this explains the emphasis on stationary measures in Section 5. Section 6 
covers two frequently needed operations with stationary multifractal 
measures: forecasting using observations from the past and downscaling 
of coarse measurements. Section 7 is devoted to the estimation of scaling 
properties from data. Rather than covering data analysis in a 
comprehensive way (again, a downing task given the size limitations of 
the chapter), we choose to discuss four popular inference techniques, 
suggesting improvements and corrections. The fact that some popular 
procedures are inefficient or altogether incorrect is a significant problem, 
as many published results on scaling are consequently inaccurate or 
suspicious. Section 8 gives a brief overview of the use of scale 
invariance in four areas of hydrology, namely rainfall, river networks and 
fluvial erosion topography, river flow, and flow through saturated porous 
media. Concluding remarks are made in Section 9. 

2. Fractal and Scale-invariant Sets  

The objects studied by classical geometry have integer dimensions. For 
example, straight lines have dimension 1, planar figures, such as squares 
and triangles, have dimension 2, and cubes and other polyhedra in three-
dimensional space have dimension 3. All these objects are locally 
smooth. By contrast, fractal geometry deals with sets that are highly 
irregular and have non-integer (fractal) dimension,5 in the sense 
explained below. One example is one-dimensional Brownian motion, 
which gives the position of a particle that starts at the origin and, during 
constant increments of time, displaces by independent and identically 
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distributed Gaussian amounts. Another example is the Sierpinski 
triangle, which is obtained by first dividing an equilateral triangle of side 
length l into four triangles of side length l/2 and removing the triangle at 
the center, and then repeating the same operation of subdivision and 
elimination on each of the remaining triangles of side length l/2, then the 
nine remaining triangles of side length l/4, and so on. 

In order to be fractal, an object must not just be irregular, but the 
irregularities must in turn depend in a regular way on scale (such that the 
number of tiles needed to cover the object must be a power function of 
the tile size; see Section 2.1). This is why fractality often occurs 
concurrently with scale invariance, which, loosely speaking, is the 
property that, under transformations that involve a change of scale, any 
part of an object looks like the whole. For example, Brownian motion 
and the Sierpinski triangle are both fractal and scale-invariant objects. In 
spite of being often used interchangeably (including in the title of this 
chapter), fractality and scale invariance are not equivalent concepts. For 
example, a straight line on the (x, y) plane that passes through the origin 
reproduces itself under isotropic scaling and therefore is scale-invariant, 
but has dimension 1 and therefore is non-fractal. Our interest is in scale 
invariance, but since fractality is a frequent property of scale-invariant 
objects, we start with a brief review of fractal sets and their fractal 
dimensions. 

2.1 Fractal Sets and their Fractal Dimensions 

There are many definitions of fractal dimension. The most general and 
mathematically satisfactory one is the Hausdorff dimension, DH . Its 
definition is rather technical6 and is given below in a simplified form, 
which is sufficient in many cases, including scale-invariant objects. 

Consider a set S of Rd  and let sδ ⊂ Rd  be a measurable set, for 
example a segment in R1 ; a square, a rectangle or a disc in R2 ; etc. The 
set sδ  has diameter (maximum linear size) δ and area Aδ . Suppose that 
Nδ  translated/rotated versions of sδ  are needed to cover S. Then the 
total area of the covering set is Nδ Aδ . If S has topological dimension less 
than d, for example a line in R2  or R3 , then typically lim

δ→0
(Nδ Aδ ) = 0  

(this is however not always the case; for example it is not for “space-


