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Why Is modelling of extreme rainfall
Important for urban flood risk estimation?

¢ Flow measurements are never enough to support
flood modelling using only flow data

¢ Particularly, in urban floods the control points are
numerous and the flow gauge sites scarce

¢ The example of Athens: No flow gauge at all in
Kephisos and Ilisos Rivers and in other urban
streams

¢ The obvious alternative: Use of hydrological
models with rainfall input data
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Brief history of the probability of extreme values

¢ 1914 (Hazen): Empirical foundation of hydrological
frequency curves known as “duration curves”

¢ 1922, 1923 (von Bortkiewicz, von Mises): theoretical
foundation of probabilities of extreme values

* 1958 (Gumbel): convergence of empirical and theoretical
approaches

¢ Today: the estimation of hydrological extremes continues
to be highly uncertain

“... the increased mathematisation of hydrological frequency analysis
over the past 50 years has not increased the validity of the estimates of
frequencies of high extremes and thus has not improved our ability to
assess the safety of structures whose design characteristics are based on
them. The distribution models used now, though disguised in rigorous
mathematical garb, are no more, and quite likely less, valid for
estimating the probabilities of rare events than were the extensions ‘by
eye’ of duration curves employed 50 years ago.” (Klemes, 2000)
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The notion of distribution of maxima

¢ Parent variable: Y (e.g. the hourly or daily rainfall depth)
¢ Parent distribution function: F(y) (with density f(y))

¢ Variable representing maximum events
X=max{Y, Y, ..., Y,}

¢ Distribution function of maxima: H, (x)
¢ Exact distribution of maxima for constant n:

H,(x) = [F(x)]”

¢ Exact distribution of maxima for randomly varying n,
following a Poisson process

H',(x) = exp{-v[1 - F(x)]}
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The notion of asymptotic or limiting
distribution of maxima

¢ Asymptotic or limiting distribution for n — e orv — o
(Generalised extreme value distribution — GEV; Jenkinson, 1955)

H(x) = exp{- [1 + x(x/A =)'/ ¥} (kx> kAW - 1/x)

¢ In hydrology, un upper bound of x is not realistic, so x>0

¢ If ¥ >0, H(x) represents the (three-parameter) extreme value
distribution of maxima of type II (EV2)

¢ In the special case x =0, H(x) represents the extreme value
distribution of maxima of type I (EV1 or Gumbel)

H(x) = expi—exp [-(x/A=9)]} (-0 <x <+eo)

¢ In the special case where the lower bound is zero (k ¢ = 1), H(x)
is two-parameter EV2 (Fréchet distribution)

H(x) = exp{~[A/(1c x)]"'*} (x=0)
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When and why does the type of extreme
value distribution (EV1 or EV2) matter?

¢ In typical storm sewer networks, designed on the basis
on return periods [T=1/ (1 — H)] of about 5-10 years, the
difference of the two distributions may be negligible (in
such return periods even interpolation from the
empirical distribution would suffice)

¢ However, for large T (> 50 years), for which extrapolation
is required, EV1 results in risk (probability of exceedence
of a certain value) significantly lower than EV2

¢ That is, for large rainfall depths, EV1 yields the lowest
possible probability of exceedence (the highest possible
T) in comparison to those of EV2 for any value of «

¢ For T>~ 1000, the return period estimated by EV1 could
be orders of magnitude higher than that of EV2
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What is the prevailing model in
hydrological practice?

¢ Definitely, EV1

¢ For example, most hydrological textbooks do not
mention EV2 at all

¢ Also, in most hydrological studies the adoption of EV1
is “automatic” (especially for extreme rainfall)

¢ Recently, however, many researchers have expressed
scepticism about the appropriateness of EV1
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Are there theoretical reasons favouring
EV1 against EV2?

¢ Most types of parent distributions functions used in
hydrology, such as exponential, gamma, Weibull,
normal and lognormal belong to the domain of
attraction of the Gumbel distribution

¢ More specifically, rainfall depth at fine time scales
(hourly, daily) has been modelled by the gamma or
Weibull distributions

¢ However, the adoption of these distributions is rather
empirical, not based on theoretical reasoning

¢ Thus, the above theoretical argumentation is
inconsistent
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Assuming that theoretical reasoning supports
EV1, what distribution shall I use in my studies?

1

¢ Intuitive answer: EV1

o
oo
|

¢ Correct answer: The
exact distribution of
maxima, H (x) or H (x)

¢ The difference of H (x)
from EV1 may be large

o
(o))
|

o
~
|

o
N
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Standardised distribution quantile

o

® Practical answer: EV2

[lt y1elds gOOd Gumbel reduced variate
approximation of H, (x

PP n( ) Convergence of distribution
of maxima for parent
distribution Weibull with
shape parameter k= 0.5

-2 0 2 4 6 8 10

Note: The distribution quantiles have been standardised by x 9999 corresponding to z;; =9.21
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What could be a basis of developing theoretical
arguments for the selection of the type of the
parent distribution?

The principle of maximum entropy (ME) is a well established
mathematical and physical principle that can yield unknown
probabilities by theoretical reasoning

Entropy is defined on grounds of probability theory
The standard or Boltzmann-Gibbs-Shannon or extensive entropy is

¢ = E[-In (V)] = fly) In fly) dy

According to a generalized definition, the Tsallis or nonextensive
entropy is

1- [ [fy)l" dx

Pg:= g—1
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Application of the ME principle

¢ We assume that Y is continuous and positive, has known
mean y and known variation o/u. We can then estimate
the distribution function with only this information,
applying the ME principle

¢* Maximization of the standard entropy is possible when
variation is relatively low (o/u < 1) and yields exponential
distribution tails (and distribution from normal to
exponential)

¢* However, empirical evidence suggests that at small time
scales rainfall exhibits high variation (o/u > 1)

¢ In this case we should apply Tsallis entropy, which yields
power-type (Pareto) distribution
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Why Inappropriateness of EV1 has not
become evident?

may result in
erroneous acceptance
of EV1 (e.g. for k =0.15
and m = 20 the
frequency of not
rejecting the EV1
distribution is 80%!)

¢ Evenifoneiswilling = 0% S5 SEEE SEb el
totry EV2as a £ ==
potential model, itis 5 .05 &
very likely that one  E
will reject it due to g o1
significant bias of e
estimators ‘ ~
For small samples, the = 015 7 samplesize |
most common method - gg >
of moments hides 02+ B s -
completely EV2 o _
Even the less biased 025 ; | | | ; |
L-moments method 0 005 01 015 02 025 03

_l/ \l_ Shape parameter, «

Bias in estimating the shape
parameter x of the GEV

distribution
(Obtained by Monte Carlo simulation)
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Empirical
Investigation:
Data set

® 169 stations from
Europe and North OTON
America

¢ Record lengths
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Top ten raingauges (in terms of record

length)
Zone : : Y_ears
Latitu- Longi- Eleva- Record Start End with
Name /Country : R
IState de (°N) tude (°) tion (m) length year year missing
values
Florence 6/ltaly 43.80 11.20 40 154 1822 1979 4
Genoa 6/Italy 44.40 8.90 21 148 1833 1980
Athens 6/Greece  37.97 23.78 107 143 1860 2002
Charleston City 2/USA/SC 32.79 —79.94 3 131 1871 2001
Oxford 5/UK 51.72 -1.29 130 1853 1993 11
Cheyenne 1/USA/WY 41.16 104.82 1867 130 1871 2001 1
Marseille 6/France 43.45 5.20 6 128 1864 1991
Armagh 5/UK 54.35 —6.65 128 1866 1993
Savannah 2lUSAIGA 32.14 -81.20 14 128 1871 2001 3
Albany 1/USA/NY 42.76 —73.80 84 128 1874 2001
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EV2 and EV1 distributions were fitted by the method of L-moments
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Demonstration of the differences of EV1 and
EV2 estimates of quantiles for high return
periods

Return period, years
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Standardisation
and merging of

all records

¢ Hypothesis of

constant

dimensionless
shape and location
parameters (x, Y)

¢ Rescaling of each
records by its mean

¢ Unification of all
records (18065 data

values)

¢ Accurate estimation

of ¥ and ¢
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Estimation method

Parameter Max likelihood Moments L-moments Least squares
K 0.093 0.126 0.104

A 0.258 0.248 0.255 0.236

W 3.24 3.36 3.28 3.54
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Verification of the applicability of the ME principle

Here the parent distribution is analyzed

Data set: Same minus one station (Athens); series above threshold,
standardized by mean and unified; period 1822-2002; 17922 station-

years of data

10
u=0.28 X
(mean minus

threshold)
o/u=119>1
ME distribution:
Pareto
k=0.15
¢,=1.16

o  Empirical
---%--- Exponential — — Truncated Normal
—e—Normal

Conclusion: o

Pareto/EV2 0.1 1 10 100 1000 10000 100000
T (years)
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¢ Hershfield’s (1961) data set,
comprising 95 000 station-years,
in a later study (Koutsoyiannis,
1999) was found to have very
similar behaviour

¢ Chaouche (2001) exploited a data

base of 200 rainfall series of
various time steps (minute-month)
from the five continents, each
including more than 100 years of
data. Using multifractal analyses
he showed that

= aPareto/EV2 type law
describes the rainfall amounts
for large return periods

= the exponent of this law is
scale invariant over scales
greater than an hour

= this exponent is almost space
invariant

Hershfield-standardised rainfall depth

" Additional support of present findings
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_~ GEV reduced variate

33

GEV probability plots of the empirical and
EV2 distribution functions of standardised
rainfall depth k for Hershfield’s (1961) data
set as determined by Koutsoyiannis (1999),
and fitted EV2 distributions with x =0.13
(Koutsoyiannis, 1999) and x« =0.15

D. Koutsoyiannis, The underestimation of risk of extreme rainfall 19




N

" Conclusion and discussion

¢ Urban flood risk estimation relies mainly on the probability
distribution of extreme rainfall

¢ [t can be shown that the distribution tail of flood is of the same
type as that of rainfall

¢ The EV1 distribution, which has been the prevailing
distribution in rainfall underestimates risk significantly

¢ The theoretical and empirical reasons that made the EV1
distribution prevail in hydrology may be not valid

¢ The principle of maximum entropy and other theoretical
arguments support the Pareto/EV2 distribution tails

¢ Thus to avoid underestimation of risk, a three-parameter EV2
distribution should be used

¢ The shape parameter « of EV2 is very hard to estimate on the
basis of an individual series, even in series with length 100 years
Or more

¢ However, the results of the analysis of 169 long series of rainfall
maxima allow the hypothesis that x is constant (x = 0.15) for all
examined zones
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More information ...

¢ This presentation is available on line at
http://www.itia.ntua.gr/e/docinfo/719/

¢ The full documentation can be found in a couple of
papers in Hydrological Sciences Journal, August 2004
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