Spatial interpolation of potential evapotranspiration for precision irrigation purposes

N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, European Water, 59, 303–309, 2017.



Precision irrigation constitutes a breakthrough for agricultural water management since it provides means to optimal water use. In recent years several applications of precision irrigation are implemented based on spatial data from different origins, i.e. meteorological stations networks, remote sensing data and in situ measurements. One of the factors affecting optimal irrigation system design and management is the daily potential evapotranspiration (PET). A commonly used approach is to estimate the daily PET for the representative day of each month during the irrigation period. In the present study, the implementation of the recently introduced non-parametric bilinear surface smoothing (BSS) methodology for spatial interpolation of daily PET is presented. The study area was the plain of Arta which is located at the Region of Epirus at the North West Greece. Daily PET was estimated according to the FAO Penman-Monteith methodology with data collected from a network of six agrometeorological stations, installed in early 2015 in selected locations throughout the study area. For exploration purposes, we produced PET maps for the Julian dates: 105, 135, 162, 199, 229 and 259, thus covering the entire irrigation period of 2015. Also, comparison and cross validation against the calculated FAO Penman-Monteith PET for each station, were performed between BSS and a commonly used interpolation method, i.e. inverse distance weighted (IDW). During the leave-one-out cross validation procedure, BSS yielded very good results, outperforming IDW. Given the simplicity of the BSS, its overall performance is satisfactory, providing maps that represent the spatial and temporal variation of daily PET.

PDF Full text (4259 KB)

See also:

Our works referenced by this work:

1. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.
2. N. Malamos, and D. Koutsoyiannis, Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory variable. Part 1:Theory, Hydrological Sciences Journal, 61 (3), 519–526, doi:10.1080/02626667.2015.1051980, 2016.
3. N. Malamos, and D. Koutsoyiannis, Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory variable. Part 2: Application to synthesized and rainfall data, Hydrological Sciences Journal, 61 (3), 527–540, doi:10.1080/02626667.2015.1080826, 2016.
4. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.

Our works that reference this work:

1. N. Malamos, and D. Koutsoyiannis, Field survey and modelling of irrigation water quality indices in a Mediterranean island catchment: A comparison between spatial interpolation methods, Hydrological Sciences Journal, 63 (10), 1447–1467, doi:10.1080/02626667.2018.1508874, 2018.
2. N. Mamassis, K. Mazi, E. Dimitriou, D. Kalogeras, N. Malamos, S. Lykoudis, A. Koukouvinos, I. L. Tsirogiannis, I. Papageorgaki, A. Papadopoulos, Y. Panagopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. Vitantzakis, N. Kappos, D. Katsanos, B. Psiloglou, E. Rozos, T. Kopania, I. Koletsis, and A. D. Koussis, A synergistically built, national-scale infrastructure for monitoring the surface waters of Greece, Water, 13 (19), 2779, doi:10.3390/w13192779, 2021.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Ndiaye, P. M., A. Bodian, L. Diop, A. Deme, A. Dezetter, K. Djaman, and A. Ogilvie, Trend and sensitivity analysis of reference evapotranspiration in the Senegal river basin using NASA meteorological data, Water, 12(7), 1957, doi:10.3390/w12071957, 2020.
2. Ndiaye, P. M., A. Bodian, L. Diop, A. Dezetter, E. Guilpart, A. Deme, and A. Ogilvie, Future trend and sensitivity analysis of evapotranspiration in the Senegal River Basin, Journal of Hydrology: Regional Studies, 35, 100820, doi:10.1016/j.ejrh.2021.100820, 2021.
3. Dimitriadou S., and K. G. Nikolakopoulos, Reference evapotranspiration (ETo) methods implemented as ArcMap models with remote-sensed and ground-based inputs, examined along with MODIS ET, for Peloponnese, Greece, ISPRS International Journal of Geo-Information, 10(6), 390, doi:10.3390/ijgi10060390, 2021.
4. #Dimitriadou, S., and K. G. Nikolakopoulos, Development of GIS models via optical programming and python scripts to implement four empirical methods of reference and actual evapotranspiration (ETo, ETa) incorporating MODIS LST inputs, Proc. SPIE 11856, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, 118560K, doi:10.1117/12.2597724, 2021.
5. Dimitriadou, S., and K. G. Nikolakopoulos, Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review, Hydrology, 8(4), 163, doi:10.3390/hydrology8040163, 2021.
6. Dimitriadou, S., and K. G. Nikolakopoulos, Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece, Water, 14(13), 2027, doi:10.3390/w14132027, 2022.
7. Fotia, K., G. Nanos, N. Malamos, M. Giannelos, P. Mpeza, and I. Tsirogiannis, Water footprint and performance assessment of a table olive cultivar (Olea europaea L. “Konservolea”) under various irrigation strategies, Acta Horticulturae, 1373, 57-64, doi:10.17660/ActaHortic.2023.1373.9, 2023.

Tagged under: Hydrological processes