Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models

G. Papacharalampous, D. Koutsoyiannis, and A. Montanari, Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models, Advances in Water Resources, 136, 103471, doi:10.1016/j.advwatres.2019.103471, 2020.

[doc_id=2017]

[English]

We introduce an ensemble learning post-processing methodology for probabilistic hydrological modelling. This methodology generates numerous point predictions by applying a single hydrological model, yet with different parameter values drawn from the respective simulated posterior distribution. We call these predictions “sister predictions”. Each sister prediction extending in the period of interest is converted into a probabilistic prediction using information about the hydrological model's errors. This information is obtained from a preceding period for which observations are available, and is exploited using a flexible quantile regression model. All probabilistic predictions are finally combined via simple quantile averaging to produce the output probabilistic prediction. The idea is inspired by the ensemble learning methods originating from the machine learning literature. The proposed methodology offers larger robustness in performance than basic post-processing methodologies using a single hydrological point prediction. It is also empirically proven to “harness the wisdom of the crowd” in terms of average interval score, i.e., the obtained quantile predictions score no worse –usually better− than the average score of the combined individual predictions. This proof is provided within toy examples, which can be used for gaining insight on how the methodology works and under which conditions it can optimally convert point hydrological predictions to probabilistic ones. A large-scale hydrological application is made in a companion paper.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

Our works referenced by this work:

1. D. Koutsoyiannis, A toy model of climatic variability with scaling behaviour, Journal of Hydrology, 322, 25–48, doi:10.1016/j.jhydrol.2005.02.030, 2006.
2. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.
3. C. Makropoulos, D. Koutsoyiannis, M. Stanic, S. Djordevic, D. Prodanovic, T. Dasic, S. Prohaska, C. Maksimovic, and H. S. Wheater, A multi-model approach to the simulation of large scale karst flows, Journal of Hydrology, 348 (3-4), 412–424, 2008.
4. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
5. A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, doi:10.1080/02626660903526292, 2010.
6. A. Montanari, and D. Koutsoyiannis, A blueprint for process-based modeling of uncertain hydrological systems, Water Resources Research, 48, W09555, doi:10.1029/2011WR011412, 2012.
7. H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014.
8. D. Koutsoyiannis, and A. Montanari, Negligent killing of scientific concepts: the stationarity case, Hydrological Sciences Journal, 60 (7-8), 1174–1183, doi:10.1080/02626667.2014.959959, 2015.
9. H. Tyralis, and G. Papacharalampous, Variable selection in time series forecasting using random forests, Algorithms, 10, 114, doi:10.3390/a10040114, 2017.
10. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, One-step ahead forecasting of geophysical processes within a purely statistical framework, Geoscience Letters, 5, 12, doi:10.1186/s40562-018-0111-1, 2018.
11. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes, Stochastic Environmental Research & Risk Assessment, doi:10.1007/s00477-018-1638-6, 2019.
12. G. Papacharalampous, H. Tyralis, A. Langousis, A. W. Jayawardena, B. Sivakumar, N. Mamassis, A. Montanari, and D. Koutsoyiannis, Probabilistic hydrological post-processing at scale: Why and how to apply machine-learning quantile regression algorithms, Water, doi:10.3390/w11102126, 2019.
13. G. Papacharalampous, H. Tyralis, D. Koutsoyiannis, and A. Montanari, Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale, Advances in Water Resources, 136, 103470, doi:10.1016/j.advwatres.2019.103470, 2020.

Our works that reference this work:

1. G. Papacharalampous, H. Tyralis, D. Koutsoyiannis, and A. Montanari, Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale, Advances in Water Resources, 136, 103470, doi:10.1016/j.advwatres.2019.103470, 2020.
2. D. Koutsoyiannis, An open letter to the Editor of Frontiers, doi:10.13140/RG.2.2.34248.39689/1, December 2021.
3. D. Koutsoyiannis, and A. Montanari, Climate extrapolations in hydrology: The expanded Bluecat methodology, Hydrology, 9, 86, doi:10.3390/hydrology9050086, 2022.
4. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Edition 3, ISBN: 978-618-85370-0-2, 391 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2023.

Works that cite this document: View on Google Scholar or ResearchGate