Stress-testing for water-energy systems by coupling agent-based models

G.-K. Sakki, A. Efstratiadis, and C. Makropoulos, Stress-testing for water-energy systems by coupling agent-based models, Proceedings of 7th IAHR Europe Congress "Innovative Water Management in a Changing Climate”, Athens, 402–403, International Association for Hydro-Environment Engineering and Research (IAHR), 2022.



We propose the incorporation of the human factor to the long-term management policy of water-energy systems, since the social and the technical system are inextricably linked. To assess the management of such systems, we attempt to stress-test them under different disturbances, which are driven by both expected and highly unpredictable changes e.g., socioeconomic and hydrometeorological fluctuations, and black-swan events, respectively. By coupling the two major research fields, namely the water-energy nexus and the social behavior, in an uncertainty-aware framework, we introduce the concept of stochastic socio-hydrological systems. In this context, the response and adaptation of society plays the role of music, while the plethora of disturbances the role of the conductor.

PDF Full text:

Our works referenced by this work:

1. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
2. I. Tsoukalas, P. Kossieris, and C. Makropoulos, Simulation of non-Gaussian correlated random variables, stochastic processes and random fields: Introducing the anySim R-Package for environmental applications and beyond, Water, 12 (6), 1645, doi:10.3390/w12061645, 2020.

Tagged under: Hydroinformatics, Water and energy