A stochastic index method for calculating annual flow duration curves in intermittent rivers

M. Rianna, A. Efstratiadis, F. Russo, F. Napolitano, and D. Koutsoyiannis, A stochastic index method for calculating annual flow duration curves in intermittent rivers, Irrigation and Drainage, 62 (S2), 41–49, doi:10.1002/ird.1803, 2013.

[doc_id=1403]

[English]

Flow duration curves are useful tools to estimate available surface water resources, at the basin scale. These represent the percentage of time during which discharge values are exceeded, irrespective of their temporal sequence. Annual flow duration curves are useful tools for evaluating all flow quantiles of a river and their confidence intervals, by removing the effects of variability from year to year. However, these tools fail to represent the hydrological regime of ephemeral rivers, since they cannot account for zero flows. In this work we propose a technique for calculating annual flow duration curves and their standard deviation in the case of intermittent rivers. In particular, we propose a generalization of the stochastic index method, in which we use the concept of total probability and order statistics. The method is proposed to determine the conditional distribution of positive flows, for given probability dry, and is implemented on three catchments in Italy and Greece, with low (<5%) and high (>40%) frequency of zero flows, respectively.

Full text is only available to the NTUA network due to copyright restrictions

See also: http://dx.doi.org/10.1002/ird.1803

Our works referenced by this work:

1. D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, I. Nalbantis, and L. Lazaridis, Hydrological study of reservoir operation, Engineering consultant for the project "Water supply of Heracleio and Agios Nicolaos from the Aposelemis dam", Commissioner: Ministry of Environment, Planning and Public Works, Contractor: Aposelemis Joint Venture, Athens, October 2001.
2. M. Rianna, E. Rozos, A. Efstratiadis, and F. Napolitano, Assessing different levels of model complexity for the Liri-Garigliano catchment simulation, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 4067, European Geosciences Union, 2011.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Ubertini, L., and F. R. Miralles-Wilhelm, New frontiers of hydrology: Soil, water, and vegetation monitoring and modelling, Irrigation and Drainage, 62(S2), iii-iv, 2013.
2. Müller, M. F., D. N. Dralle, and S. E. Thompson, Analytical model for flow duration curves in seasonally dry climates, Water Resources Research, 50(7), 5510-5531, 2014.
3. Atieh, M., B. Gharabaghi, and R. Rudra, Entropy-based neural networks model for flow duration curves at ungauged sites, Journal of Hydrology, 529(3), 1007–1020, doi:10.1016/j.jhydrol.2015.08.068, 2015
4. Varouchakis, E. A., K. Spanoudaki, D. Hristopulos, G. P. Karatzas, and G. A. Corzo Perez, Stochastic modeling of aquifer level temporal fluctuations based on the conceptual basis of the soil-water balance equation, Soil Science, 181(6), 224–231, doi:10.1097/SS.0000000000000157, 2016.
5. #Rianna, M., F. Lombardo, B. Boccanera, and M. Giglioni, On the evaluation of FDC by the use of spot measurements, AIP Conference Proceedings, 1738, 430005, Rhodes, 2016.
6. Ridolfi, E., M. Rianna, G. Trani, L. Alfonso, G. Di Baldassarre, F. Napolitano, and F. Russo, A new methodology to define homogeneous regions through an entropy based clustering method, Advances in Water Resources, 96, 237-250, doi:10.1016/j.advwatres.2016.07.007, 2016.
7. #Rianna, M., E. Ridolfi, and F. Napolitano, Comparison of different hydrological similarity measures to estimate flow quantiles, AIP Conference Proceedings, 1863(1), 470002, doi:10.1063/1.4992633, 2017.
8. Ridolfi, E., H. Kumar, and A. Bárdossy, A methodology to estimate flow duration curves at partially ungauged basins, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2018-347, 2018.

Tagged under: Hydrological models