Stochastic investigation of wind process for climatic variability identification

I. Deligiannis, V. Tyrogiannis, Ο. Daskalou, P. Dimitriadis, Y. Markonis, T. Iliopoulou, and D. Koutsoyiannis, Stochastic investigation of wind process for climatic variability identification, European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, Vol. 18, Vienna, EGU2016-14946-6, doi:10.13140/RG.2.2.26681.36969, European Geosciences Union, 2016.



The wind process is considered one of the hydrometeorological processes that generates and drives the climate dynamics. We use a dataset comprising hourly wind records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e. mean process variance vs. scale) for various time periods.

Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

PDF Full text:

PDF Additional material:

Our works that reference this work:

1. I. Deligiannis, P. Dimitriadis, Ο. Daskalou, Y. Dimakos, and D. Koutsoyiannis, Global investigation of double periodicity οf hourly wind speed for stochastic simulation; application in Greece, Energy Procedia, 97, 278–285, doi:10.1016/j.egypro.2016.10.001, 2016.
2. M. Chalakatevaki, P. Stamou, S. Karali, V. Daniil, P. Dimitriadis, K. Tzouka, T. Iliopoulou, D. Koutsoyiannis, P. Papanicolaou, and N. Mamassis, Creating the electric energy mix in a non-connected island, Energy Procedia, 125, 425–434, doi:10.1016/j.egypro.2017.08.089, 2017.

Tagged under: Students' works presented in conferences