Energy, variability and weather finance engineering

G. Karakatsanis, D. Roussis, Y. Moustakis, N. Gournari, I. Parara, P. Dimitriadis, and D. Koutsoyiannis, Energy, variability and weather finance engineering, Energy Procedia, 125, 389–397, doi:10.1016/j.egypro.2017.08.073, 2017.

[doc_id=1734]

[English]

Weather derivatives comprise efficient financial tools for managing hydrometeorological uncertainties in various markets. With ~46% utilization by the energy industry, weather derivatives are projected to constitute a critical element for dealing with risks of low and medium impacts –contrary to standard insurance contracts that deal with extreme events. In this context, we design and engineer -via Monte Carlo pricing- a weather derivative for a remote island in Greece -powered by an autonomous diesel-fuelled generator- resembling to a standard call option contract to test the benefits for both the island’s public administration and a bank -as the transaction’s counterparty.

PDF Full text (872 KB)

Our works referenced by this work:

1. D. Koutsoyiannis, and A. Langousis, Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78, Academic Press, Oxford, 2011.

Our works that reference this work:

1. E. Klousakou, M. Chalakatevaki, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, G. Karakatsanis, A. Efstratiadis, N. Mamassis, R. Tomani, E. Chardavellas, and D. Koutsoyiannis, A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources, Advances in Geosciences, 45, 193–199, doi:10.5194/adgeo-45-193-2018, 2018.

Works that cite this document: View on Google Scholar or ResearchGate

Tagged under: Students' works presented in conferences, Uncertainty, Water and energy