A stochastic investigation of the intermittent behaviour of wind; application to renewable energy resources management

A. Gkolemis, P. Dimitriadis, G. Karakatsanis, T. Iliopoulou, and D. Koutsoyiannis, A stochastic investigation of the intermittent behaviour of wind; application to renewable energy resources management, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-15979-3, European Geosciences Union, 2018.

[doc_id=1795]

[English]

A challenging characteristic of renewable energy systems is intermittence of the related natural processes (such as wind), whose management imposes an additional cost. This also implies the need to immediate back up the extra supply (introduced by the resource’s physical bursts) to other units (e.g. in a hybrid pumped storage hydropower system). The complexity of this issue does not just rely on the need for optimizing the hybrid system but rather on the requirement for simulating these bursts. In this study, we introduce and test an innovative model for the wind process by simultaneously preserving not only the marginal distribution (including extreme events), correlation structure (from small to large scales) and internal double (diurnal and seasonal) periodicities but also its intermittent behaviour. Furthermore, we present a pilot application including a pumped storage hydropower system and we show how the additional cost imposed by the intermittent behaviour of wind can be estimated.

PDF Full text (33 KB)

Our works that reference this work:

1. E. Klousakou, M. Chalakatevaki, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, G. Karakatsanis, A. Efstratiadis, N. Mamassis, R. Tomani, E. Chardavellas, and D. Koutsoyiannis, A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources, Advances in Geosciences, 45, 193–199, doi:10.5194/adgeo-45-193-2018, 2018.

Tagged under: Students' works presented in conferences