Optimal operation of a run-of-river small hydropower plant with two hydro-turbines

V.-E. K. Sarantopoulou, G. J. Tsekouras, A. D. Salis, D. E. Papantonis, V. Riziotis, G. Caralis, K.-K. Drakaki, G.-K. Sakki, A. Efstratiadis, and K. X. Soulis, Optimal operation of a run-of-river small hydropower plant with two hydro-turbines, Proceedings of 7th International Conference on Mathematics and Computers in Sciences and Industry (MCSI), Marathon Beach, Athens, 2022.



The operation of a small hydroelectric power plant (HPS) with two hydro turbines of different types and power is usually done following a hierarchical rule, which is not necessarily the most efficient. Alternatively, other synergetic rules have been proposed that improve the delivered energy. In this paper, the operation of the two turbines is systematized by examining all possible operation combinations of the turbines, depending on the incoming water flow, its distribution (in the case of operation of both hydro turbines, at the optimal power mode) and the formation of a suitable lookup table for the optimal operation of an HPS. The implementation of the method is easily achieved using a quadratic equation efficiency-flow curve. In this way, the total efficiency of the two-turbine system is optimized.

PDF Full text:

Our works referenced by this work:

1. G.-K. Sakki, I. Tsoukalas, and A. Efstratiadis, A reverse engineering approach across small hydropower plants: a hidden treasure of hydrological data?, Hydrological Sciences Journal, 67 (1), 94–106, doi:10.1080/02626667.2021.2000992, 2022.
2. K.-K. Drakaki, G.-K. Sakki, I. Tsoukalas, P. Kossieris, and A. Efstratiadis, Day-ahead energy production in small hydropower plants: uncertainty-aware forecasts through effective coupling of knowledge and data, Advances in Geosciences, 56, 155–162, doi:10.5194/adgeo-56-155-2022, 2022.

Tagged under: Renewable energy, Water and energy