Navigation

On the appropriateness of the Gumbel distribution for modelling extreme rainfall (solicited)

D. Koutsoyiannis, On the appropriateness of the Gumbel distribution for modelling extreme rainfall (solicited), Hydrological Risk: recent advances in peak river flow modelling, prediction and real-time forecasting. Assessment of the impacts of land-use and climate changes, edited by A. Brath, A. Montanari, and E. Toth, Bologna, 303–319, doi:10.13140/RG.2.1.3811.6080, Editoriale Bios, Castrolibero, Italy, 2004.

[doc_id=590]

[English]

For half a century, the Gumbel distribution has been the prevailing model for quantifying risk associated with extreme rainfall. Several arguments including theoretical reasons and empirical evidence are supposed to support the appropriateness of the Gumbel distribution. These arguments are examined thoroughly in this work and are put into question. Moreover, it is shown that the Gumbel distribution may misjudge the hydrological risk as it underestimates seriously the largest extreme rainfall amounts. Besides, it is shown that the three-parameter extreme value distribution of type II is a more consistent alternative and it is discussed how this distribution can be applied even with short hydrological records.

PDF Full text:

See also: http://dx.doi.org/10.13140/RG.2.1.3811.6080

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Mohymont, B., G.R. Demaree and D.N. Faka, Establishment of IDF-curves for precipitation in the tropical area of Central Africa - comparison of techniques and results, Natural Hazards and Earth System Sciences, 4(3), 375-387, 2004.
2. #Jewson, S., A. Brix and C. Ziehmann, Weather Derivative Valuation: The Meteorological, Statistical, Financial and Mathematical Foundations, Cambridge University Press, 2005.
3. Mohymont, B., and G.R. Demaree, Intensity-duration-frequency curves for precipitation at Yangambi, Congo, derived by means of various models of Montana type, Hydrological Sciences Journal, 51(2), 239-253, 2006.
4. Luna, M.Y., A. Morata, C. Almarza and M.L. Martin, The use of GIS to evaluate and map extreme maximum and minimum temperatures in Spain, Meteorological Applications, 13(04), 385-392, 2006.
5. El Morjanil, Z.E.A., S. Ebener, J. Boos, E. Abdel Ghaffar and A. Musani, Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk ..., Intern. J. Health Geographics, 6, 8, 1-18, 2007.
6. Saf, B, F. Dikbas and M. Yasar, Determination of regional frequency distributions of floods in West Mediterranean river basins in Turkey, Fresenius Environmental Bulletin, 16(10), 1300-1308, 2007.
7. Melice, J.L., and C.J.C. Reason, Return period of extreme rainfall at George, South Africa South African Journal of Science, 103(11-12), 499-501, 2007.
8. Benkhaled, A., Distributions statistiques des pluies maximales annuelles dans la region du Cheliff, Comparaison des techniques et des resultats [Statistical distributions of annual maximum rainfalls depths in the area of Cheliff, Comparison of techniques and results], Courrier du Savoir, 8, 83-91, 2007.
9. #Erdi, P., Complexity Explained, Springer, 2008.
10. El Adlouni, S., B. Bobee and T.B.M.J. Ouarda, On the tails of extreme event distributions in hydrology, Journal of Hydrology, 355(1-4), 2008.
11. Aryal, G. R., and C. P. Tsokos, On the transmuted extreme value distribution with application, Nonlinear Analysis: Theory, Methods & Applications, 71(12), E1401-E1407, 2009.
12. Benabdesselam, T., and Y. Hammar, Estimation de la Réponse hydrologique d’un bassin versant urbanisé, European Journal of Scientific Research, 29 (3), 334-348, 2009.
13. Zin, W. Z. W., A. A. Jemain and K. Ibrahim, The best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-moment, Theor. Appl. Climatol., 96 (3-4), 337-344, 2009.
14. Zawiah, W. Z. W., A. A. Jemain, K. Ibrahim, J. Suhaila and M. D. Sayang, A comparative study of extreme rainfall in peninsular Malaysia with reference to partial duration and annual extreme series, Sains Malaysiana, 38(5)(): 751–760, 2009.
15. Ceresetti, D., G. Molinié, and J.-D. Creutin, Scaling properties of heavy rainfall at short duration: A regional analysis, Water Resour. Res., 46, W09531, doi: 10.1029/2009WR008603, 2010.
16. Fernando, W. C. D. K., and S. S. Wickramasuriya, The hydro-meteorological estimation of probable maximum precipitation under varying scenarios in Sri Lanka, International Journal of Climatology, 31 (5), 668-676, 2011.
17. Elsebaie, I. H., Developing rainfall intensity–duration–frequency relationship for two regions in Saudi Arabia, Journal of King Saud University - Engineering Sciences, doi: 10.1016/j.jksues.2011.06.001, 2011.
18. Lozano, J. G., V. V. Tristán, M. R. Rodríguez, M. De Jesús Aguirre Bortoni, J. M. P. De La Cruz and H. T. S. Espinoza, Return periods of torrential rains for the state of Tamaulipas, Mexico, Investigaciones Geograficas, 76, 20-33, 2011.
19. Brandimarte, L., and G. Di Baldassarre, Uncertainty in design flood profiles derived by hydraulic modelling, Hydrology Research, 43 (6), 753-761, 2012.
20. Feroze, N., and M. Aslam, Bayesian estimation of two-component mixture of Gumbel type II distribution under informative priors, International Journal of Basic and Applied Sciences, 1 (4), 534-556, 2012.
21. Eli, A., M. Shaffie and W. Z. Wan Zin, Preliminary study on Bayesian extreme rainfall analysis: A case study of Alor Setar, Kedah, Malaysia, Sains Malaysiana, 41 (11), 1403-1410, 2012.
22. Bossé, B., B. Bussière, R. Hakkou, A. Maqsoud and M. Benzaazoua, Assessment of phosphate limestone wastes as a component of a store-and-release cover in a semiarid climate, Mine Water and the Environment, 10.1007/s10230-013-0225-9, 2013.
23. Benkhaled, A., H. Higgins, F. Chebana and A. Necir, Frequency analysis of annual maximum suspended sediment concentrations in Abiod wadi, Biskra (Algeria), Hydrological Processes, 28 (12), 3841-3854, 2014.
24. Boucefiane, A., M. Meddi, J. P. Laborde and S. Eslamian, Rainfall frequency analysis using extreme values distributions in the steppe region of western Algeria, International Journal of Hydrology Science and Technology, 4 (4), 348-367, 2014.
25. Fuentes Mariles, O.A., M.L. Arganis Juárez, R. Domínguez Mora, G.E. Fuentes Mariles and K. Rodríguez Vázquez, Maximization of the likelihood function of probability distributions using genetic algorithms [Maximización de la función de verosimilitud de distribuciones de probabilidad usando algoritmos genéticos], Ingeniería del Agua, 19 (1), 17-29, 2015.

Tagged under: Extremes, Rainfall models