Exploring the link between urban development and water demand: The impact of water-aware technologies and options

E. Rozos, S. Baki, D. Bouziotas, and C. Makropoulos, Exploring the link between urban development and water demand: The impact of water-aware technologies and options, Computing and Control for the Water Industry (CCWI) 2011, Exeter, UK, CCWI2011-311, University of Exeter, 2011.



In conventional urban planning, water demand is covered exclusively by potable water supply and wastewater is directly conducted to the sewers. One of the disadvantages of this practice is that the expansion of an urban area puts additional pressure on existing water infrastructure (both water supply and wastewater networks), which may result in capacity exceedance. In such cases, the required upgrades of existing infrastructure are slow and potentially very costly. On the other hand, modern decentralized water-aware technologies (including for example grey water recycling and rainwater harvesting) enable water reuse at the scale of a household or a neighbourhood. Such options reduce the pressure on the infrastructure and alleviate the need for upgrading centralized infrastructure, hence reducing the cost of urban growth. In an attempt to quantify the potential benefits of these technologies we coupled an urban water management model with a land-use model based on Cellular Automata (CA). The land-use model produces scenarios of urban growth/transformation, which are then assessed through the use of an urban water management model. The assessment is based on indicators including potable water demand, peak runoff discharge and volume of produced waste water. The final result is a representation of the evolution of these indicators as a function of urban growth contrasting conventional and innovative practices.

PDF Full text (476 KB)

PDF Additional material:

Our works that reference this work:

1. S. Baki, I. Koutiva, and C. Makropoulos, A hybrid artificial intelligence modelling framework for the simulation of the complete, socio-technical, urban water system, 2012 International Congress on Environmental Modelling and Software, Managing Resources of a Limited Planet, Leipzig, International Environmental Modelling and Software Society, 2012.
2. E. Rozos, and C. Makropoulos, Source to tap urban water cycle modelling, Environmental Modelling and Software, 41, 139–150, doi:10.1016/j.envsoft.2012.11.015, Elsevier, 1 March 2013.
3. D. Bouziotas, E. Rozos, and C. Makropoulos, Water and the City: Exploring links between urban growth and water demand management., Journal of Hydroinformatics, 17 (2), doi:10.2166/hydro.2014.053, 2015.

Other works that reference this work (this list might be obsolete):

1. Tong Thi Hoang Duong, Avner Adin, David Jackman, Peter van der Steen, Kala Vairavamoorthy, Urban water management strategies based on a total urban water cycle model and energy aspects – Case study for Tel Aviv, Urban Water Journal, Vol. 8, Iss. 2, 2011.