Assessing the applicability of the Bartlett-Lewis model in simulating residential water demands

P. Kossieris, C. Makropoulos, E. Creaco, L. Vamvakeridou-Lyroudia, and D. Savic, Assessing the applicability of the Bartlett-Lewis model in simulating residential water demands, Procedia Engineering, 154, 123–131, 2016.



This paper presents the set-up and application of the Bartlett-Lewis clustering mechanism to simulate residential water demand at fine, i.e. sub-hourly, time scales. Two different variants of the model, i.e., the original and the random-parameter model, are examined. The models are assessed in terms of preserving the main statistical characteristics and temporal properties of demand series at a range of fine time scales, i.e., from 1-min up to 15-min. The comparison against the typical Poisson rectangular pulse model showed that clustering mechanism enables a better reproduction of demand characteristics at levels of aggregation other than those used in the fitting procedure.

Full text is only available to the NTUA network due to copyright restrictions

See also:

Our works that reference this work:

1. P. Kossieris, and C. Makropoulos, Exploring the statistical and distributional properties of residential water demand at fine time scales, Water, 10 (10), 1481, doi:10.3390/w10101481, 2018.
2. P. Kossieris, I. Tsoukalas, C. Makropoulos, and D. Savic, Simulating marginal and dependence behaviour of water demand processes at any fine time scale, Water, 11 (5), 885, doi:10.3390/w11050885, 2019.
3. I. Koutiva, and C. Makropoulos, Exploring the effects of alternative water demand management strategies using an agent-based model, Water, 11 (11), 2216, doi:10.3390/w11112216, 2019.

Other works that reference this work (this list might be obsolete):

1. Onof, C., and L.-P. Wang, Modelling rainfall with a Bartlett–Lewis process: New developments, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2019-406, 2019.

Tagged under: Rainfall models, Urban water