Insights into the Oroville Dam 2017 spillway incident

A. Koskinas, A. Tegos, P. Tsira, P. Dimitriadis, T. Iliopoulou, P. Papanicolaou, D. Koutsoyiannis, and Τ. Williamson, Insights into the Oroville Dam 2017 spillway incident, Geosciences, 9 (37), doi:10.3390/geosciences9010037, 2019.



In February 2017, a failure occurring in Oroville Dam’s main spillway risked causing severe damages downstream. A unique aspect of this incident was the fact that it happened during a flood scenario well within its design and operational procedures, prompting research into its causes and determining methods to prevent similar events from reoccurring. In this study, a hydroclimatic analysis of Oroville Dam’s catchment is conducted, along with a review of related design and operational manuals. The data available allows for the comparison of older flood-frequency analyses to new alternative methods proposed in this paper and relevant literature. Based on summary characteristics of the 2017 floods, possible causes of the incident are outlined, in order to understand which factors contributed more significantly. It turns out that the event was most likely the result of a structural problem in the dam’s main spillway and detrimental geological conditions, but analysis of surface level data also reveals operational issues that were not present during previous larger floods, promoting a discussion about flood control design methods, specifications, and dam inspection procedures, and how these can be improved to prevent a similar event from occurring in the future.

PDF Full text (6834 KB)

Our works referenced by this work:

1. D. Koutsoyiannis, A probabilistic view of Hershfield's method for estimating probable maximum precipitation, Water Resources Research, 35 (4), 1313–1322, doi:10.1029/1999WR900002, 1999.
2. S.M. Papalexiou, and D. Koutsoyiannis, A probabilistic approach to the concept of probable maximum precipitation, Advances in Geosciences, 7, 51-54, doi:10.5194/adgeo-7-51-2006, 2006.
3. D. Koutsoyiannis, Scale of water resources development and sustainability: Small is beautiful, large is great, Hydrological Sciences Journal, 56 (4), 553–575, doi:10.1080/02626667.2011.579076, 2011.
4. S.M. Papalexiou, D. Koutsoyiannis, and C. Makropoulos, How extreme is extreme? An assessment of daily rainfall distribution tails, Hydrology and Earth System Sciences, 17, 851–862, doi:10.5194/hess-17-851-2013, 2013.
5. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of the Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.
6. D. Koutsoyiannis, and S.M. Papalexiou, Extreme rainfall: Global perspective, Handbook of Applied Hydrology, Second Edition, edited by V.P. Singh, 74.1–74.16, McGraw-Hill, New York, 2017.
7. H. Tyralis, A. Tegos, A. Delichatsiou, N. Mamassis, and D. Koutsoyiannis, A perpetually interrupted interbasin water transfer as a modern Greek drama: Assessing the Acheloos to Pinios interbasin water transfer in the context of integrated water resources management, Open Water Journal, 4 (1), 113–128, 12, 2017.
8. A. Koskinas, The Oroville Dam 2017 - Spillway Incident. Possible Causes and Solutions, Diploma thesis, 211 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, November 2017.
9. A. Tegos, W. Schlüter, N. Gibbons, Y. Katselis, and A. Efstratiadis, Assessment of environmental flows from complexity to parsimony - Lessons from Lesotho, Water, 10 (10), 1293, doi:10.3390/w10101293, 2018.

Our works that reference this work:

1. R. Ioannidis, G.-F. Sargentis, and D. Koutsoyiannis, Landscape design in infrastructure projects - is it an extravagance? A cost-benefit investigation of practices in dams, Landscape Research, doi:10.1080/01426397.2022.2039109, 2022.

Works that cite this document: View on Google Scholar or ResearchGate

Tagged under: Students' works