Scale of water resources development and sustainability: Small is beautiful, large is great

D. Koutsoyiannis, Scale of water resources development and sustainability: Small is beautiful, large is great, Hydrological Sciences Journal, 56 (4), 553–575, doi:10.1080/02626667.2011.579076, 2011.



Several aspects of water resources and their links with food and energy supply, as well as with natural hazards, have been obscured due to political aims and ideological influences. At the same time, the involvement of politics and ideology testifies the high importance of water related issues internationally, and reflects the intensifying unresolved problems related to water, food and energy adequacy, and protection from floods and droughts. In an attempt to separate as much as possible the essence of problems from the political and ideological influences, several facts and fallacies about water and interrelated issues are discussed, based on data (numbers) rather than on dominant ideological views. The domain of the discussion is generally the entire globe, but, as a particular case, Greece, whose water resources are only partly developed, is discussed in more detail. From a pragmatic point of view, the water infrastructure in developed countries appears to be irreplaceable, although its management is adaptable toward more environmentally friendly operation. For developing countries, no alternative to large-scale water resources development by engineering means appears plausible. The recent pursuit of renewable energy makes imperative the utilization of the existing, and, where possible, the building of new, large hydropower plants, as only these can provide efficient energy storage, which is necessary for the renewable energy provided by nature in highly varying patterns.

PDF Full text (3787 KB)

PDF Additional material:

See also:


Two typing errors in reference to Fig. 12 have been noted and corrected in the file provided here. In addition to people acknowledged in the paper, thanks (and apology) are due to Aris Tegos has also provided useful comments.

Our works referenced by this work:

1. D. Koutsoyiannis, Study of the operation of reservoirs, General outline of the Acheloos River diversion project, Contractor: Directorate for Acheloos Diversion Works – General Secretariat of Public Works – Ministry of Environment, Planning and Public Works, Collaborators: G. Kalaouzis, ELECTROWATT, P. Marinos, D. Koutsoyiannis, 420 pages, 1996.
2. D. Koutsoyiannis, A. Efstratiadis, and N. Mamassis, Appraisal of the surface water potential and its exploitation in the Acheloos river basin and in Thessaly, Ch. 5 of Study of Hydrosystems, Complementary study of environmental impacts from the diversion of Acheloos to Thessaly, Commissioner: Ministry of Environment, Planning and Public Works, Contractor: Ydroexigiantiki, Collaborators: D. Koutsoyiannis, 2001.
3. A. Christofides, A. Efstratiadis, D. Koutsoyiannis, G.-F. Sargentis, and K. Hadjibiros, Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?, Hydrology and Earth System Sciences, 9 (5), 507–515, doi:10.5194/hess-9-507-2005, 2005.
4. D. Koutsoyiannis, N. Zarkadoulas, A. N. Angelakis, and G. Tchobanoglous, Urban water management in Ancient Greece: Legacies and lessons, Journal of Water Resources Planning and Management - ASCE, 134 (1), 45–54, doi:10.1061/(ASCE)0733-9496(2008)134:1(45), 2008.
5. D. Koutsoyiannis, A. Andreadakis, R. Mavrodimou, A. Christofides, N. Mamassis, A. Efstratiadis, A. Koukouvinos, G. Karavokiros, S. Kozanis, D. Mamais, and K. Noutsopoulos, National Programme for the Management and Protection of Water Resources, Support on the compilation of the national programme for water resources management and preservation, 748 pages, doi:10.13140/RG.2.2.25384.62727, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, February 2008.
6. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
7. D. Koutsoyiannis, A. Montanari, H. F. Lins, and T.A. Cohn, Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research—DISCUSSION of “The implications of projected climate change for freshwater resources and their management”, Hydrological Sciences Journal, 54 (2), 394–405, doi:10.1623/hysj.54.2.394, 2009.
8. G. Di Baldassarre, A. Montanari, H. F. Lins, D. Koutsoyiannis, L. Brandimarte, and G. Blöschl, Flood fatalities in Africa: from diagnosis to mitigation, Geophysical Research Letters, 37, L22402, doi:10.1029/2010GL045467, 2010.

Our works that reference this work:

1. D. Koutsoyiannis, N. Mamassis, A. Efstratiadis, N. Zarkadoulas, and Y. Markonis, Floods in Greece, Changes of Flood Risk in Europe, edited by Z. W. Kundzewicz, Chapter 12, 238–256, IAHS Press, Wallingford – International Association of Hydrological Sciences, 2012.
2. A. Montanari, G. Young, H. H. G. Savenije, D. Hughes, T. Wagener, L. L. Ren, D. Koutsoyiannis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta, M. Hipsey, B. Schaefli, B. Arheimer, E. Boegh, S. J. Schymanski, G. Di Baldassarre, B. Yu, P. Hubert, Y. Huang, A. Schumann, D. Post, V. Srinivasan, C. Harman, S. Thompson, M. Rogger, A. Viglione, H. McMillan, G. Characklis, Z. Pang, and V. Belyaev, “Panta Rhei – Everything Flows”, Change in Hydrology and Society – The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58 (6), 1256–1275, doi:10.1080/02626667.2013.809088, 2013.
3. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of the Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.
4. D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.
5. D. Koutsoyiannis, and A. Patrikiou, Water control in Ancient Greek cities, A History of Water: Water and Urbanization, edited by T. Tvedt and T. Oestigaard, 130–148, I.B. Tauris, London, 2014.
6. H. Tyralis, A. Tegos, A. Delichatsiou, N. Mamassis, and D. Koutsoyiannis, A perpetually interrupted interbasin water transfer as a modern Greek drama: Assessing the Acheloos to Pinios interbasin water transfer in the context of integrated water resources management, Open Water Journal, 4 (1), 113–128, 12, 2017.
7. A. Koskinas, A. Tegos, P. Tsira, P. Dimitriadis, T. Iliopoulou, P. Papanicolaou, D. Koutsoyiannis, and Τ. Williamson, Insights into the Oroville Dam 2017 spillway incident, Geosciences, 9 (37), doi:10.3390/geosciences9010037, 2019.
8. G.-F. Sargentis, R. Ioannidis, G. Karakatsanis, S. Sigourou, N. D. Lagaros, and D. Koutsoyiannis, The development of the Athens water supply system and inferences for optimizing the scale of water infrastructures, Sustainability, 11 (9), 2657, doi:10.3390/su11092657, 2019.
9. A. Koskinas, and A. Tegos, StEMORS: A stochastic eco-hydrological model for optimal reservoir sizing, Open Water Journal, 6 (1), 1, 2020.
10. G.-F. Sargentis, T. Iliopoulou, S. Sigourou, P. Dimitriadis, and D. Koutsoyiannis, Evolution of clustering quantified by a stochastic method — Case studies on natural and human social structures, Sustainability, 12 (19), 7972, doi:10.3390/su12197972, 2020.
11. N. Mamassis, A. Efstratiadis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Water and Energy, Handbook of Water Resources Management: Discourses, Concepts and Examples, edited by J.J. Bogardi, T. Tingsanchali, K.D.W. Nandalal, J. Gupta, L. Salamé, R.R.P. van Nooijen, A.G. Kolechkina, N. Kumar, and A. Bhaduri, Chapter 20, 617–655, doi:10.1007/978-3-030-60147-8_20, Springer Nature, Switzerland, 2021.
12. R. Ioannidis, G.-F. Sargentis, and D. Koutsoyiannis, Landscape design in infrastructure projects - is it an extravagance? A cost-benefit investigation of practices in dams, Landscape Research, doi:10.1080/01426397.2022.2039109, 2022.
13. G.-F. Sargentis, and D. Koutsoyiannis, The function of money in water–energy–food and land nexus, Land, 12 (3), 669, doi:10.3390/land12030669, 2023.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Sivakumar, B., Water crisis: From conflict to cooperation – an overview, Hydrological Sciences Journal, 56(4), 531-552, 2011.
2. Sivapalan, M., H. H. G. Savenije and G. Blöschl, Socio-hydrology: A new science of people and water, Hydrological Processes, 26 (8), 1270-1276, 2012.
3. Gunasekara, N. K., S. Kazama, D. Yamazaki and T. Oki, The effects of country-level population policy for enhancing adaptation to climate change, Hydrol. Earth Syst. Sci., 17, 4429-4440, 2013.
4. Kundzewicz, Z. W., I. Pińskwar and G. R. Brakenridge, Large floods in Europe, 1985–2009, Hydrological Sciences Journal, 58 (1), 1-7, 2013.
5. Sivakumar, B., V. P. Singh, R. Berndtsson and S. K. Khan, Catchment classification framework in hydrology: challenges and directions, Journal of Hydrologic Engineering , 10.1061/(ASCE)HE.1943-5584.0000837, 2013.
6. #Petrov, G., and R. Berberova, Software tools for georadar data processing and visualization, Computer Science Education and Computer Science - 9th Annual International Conference, 2013.
7. Berhane, G., and K. Walraevens, Geological challenges in constructing the proposed Geba dam site, northern Ethiopia, Bulletin of Engineering Geology and the Environment, 10.1007/s10064-013-0480-9, 2013.
8. #Gupta, J., Global water governance, The Handbook of Global Climate and Environment Policy (ed. by R. Falkner), 19-36, Wiley, West Sussex, UK, 2013.
9. Paschalis, A., P. Molnar, S. Fatichi and P. Burlando, A stochastic model for high resolution space‐time precipitation simulation, Water Resources Research, 49 (12), 8400-8417, 2013.
10. Liu H.-J., and N.-S. Hsu, Novel information for source identification of local pumping and recharging in a groundwater system, Hydrological Sciences Journal, 10.1080/02626667.2014.898847, 2014.
11. Graf, R., Reference statistics for the structure of measurement series of groundwater levels (Wielkopolska Lowland - western Poland), Hydrological Sciences Journal, 10.1080/02626667.2014.905689, 2014.
12. Bakken, T. H., A. G. Aase, D. Hagen, H. Sundt, D. N. Barton and P. Lujala, Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects, Journal of Environmental Management, 140, 93-101, 2014.
13. Rodríguez–Estrella, T., The problems of overexploitation of aquifers in semi-arid areas: characteristics and proposals for mitigation, Boletín Geológico y Minero, 125 (1), 91-109, 2014.
14. Dou, M., Q. Zuo, J. Ma and G. Li, Simulation and control of the coupled systems of water quantity–water quality–socio-economics in the Huaihe River Basin, Hydrological Sciences Journal, 10.1080/02626667.2014.959953, 2014.
15. Ambalam, K., Reallocation of water resources in the Arab region: an emerging challenge in water governance, European Journal of Sustainable Development, 3 (3), 283-298, 10.14207/ejsd.2014.v3n3p283, 2014.
16. Jager, H.I., R.A. Efroymson, J.J. Opperman and M.R. Kelly, Spatial design principles for sustainable hydropower development in river basins, Renewable and Sustainable Energy Reviews, 45, 808-816, 2015.
17. McMillan, H., A. Montanari, C. Cudennec, H. Savenjie, H. Kreibich, T. Krüger, J. Liu, A. Meija, A. van Loon, H. Aksoy, G. Di Baldassarre, Y. Huang, D. Mazvimavi, M. Rogger, S. Bellie, T. Bibikova, A. Castellarin, Y. Chen, D. Finger, A. Gelfan, D. Hannah, A. Hoekstra, H. Li, S. Maskey, T. Mathevet, A. Mijic, A. Pedrozo Acuña, M. J. Polo, V. Rosales, P. Smith, A. Viglione, V. Srinivasan, E. Toth, R. van Nooyen, and J. Xia, Panta Rhei 2013-2015: Global perspectives on hydrology, society and change, Hydrological Sciences Journal, doi:10.1080/02626667.2016.1159308, 2016.
18. Ding, L., Q. Li, J. Tang, J. Wang, and X. Chen, Linking land use metrics measured in aquatic-terrestrial interfaces to water quality of reservoir-based water sources in Eastern China, Sustainability, 11(18), 4860, doi:10.3390/su11184860, 2019.

Tagged under: Course bibliography: Water Resources Management, Hydrosystems, Water and energy