Stochastic analysis of hourly to monthly potential evapotranspiration with a focus on the long-range dependence and application with reanalysis and ground-station data

P. Dimitriadis, A. Tegos, and D. Koutsoyiannis, Stochastic analysis of hourly to monthly potential evapotranspiration with a focus on the long-range dependence and application with reanalysis and ground-station data, Hydrology, 8 (4), 177, doi:10.3390/hydrology8040177, 2021.



The stochastic structures of potential evaporation and evapotranspiration (PEV and PET or ETo) are analyzed using the ERA5 hourly reanalysis data and the Penman–Monteith model applied to the well-known CIMIS network. The latter includes high-quality ground meteorological samples with long lengths and simultaneous measurements of monthly incoming shortwave radiation, temperature, relative humidity, and wind speed. It is found that both the PEV and PET processes exhibit a moderate long-range dependence structure with a Hurst parameter of 0.64 and 0.69, respectively. Additionally, it is noted that their marginal structures are found to be light-tailed when estimated through the Pareto–Burr–Feller distribution function. Both results are consistent with the global-scale hydrological-cycle path, determined by all the above variables and rainfall, in terms of the marginal and dependence structures. Finally, it is discussed how the existence of, even moderate, long-range dependence can increase the variability and uncertainty of both processes and, thus, limit their predictability.

PDF Full text (3107 KB)

Our works referenced by this work:

1. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
2. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
3. D. Koutsoyiannis, Hurst-Kolmogorov dynamics as a result of extremal entropy production, Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi:10.1016/j.physa.2010.12.035, 2011.
4. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.
5. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
6. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.
7. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.
8. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.
9. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
10. D. Koutsoyiannis, P. Dimitriadis, F. Lombardo, and S. Stevens, From fractals to stochastics: Seeking theoretical consistency in analysis of geophysical data, Advances in Nonlinear Geosciences, edited by A.A. Tsonis, 237–278, doi:10.1007/978-3-319-58895-7_14, Springer, 2018.
11. G. Koudouris, P. Dimitriadis, T. Iliopoulou, N. Mamassis, and D. Koutsoyiannis, A stochastic model for the hourly solar radiation process for application in renewable resources management, Advances in Geosciences, 45, 139–145, doi:10.5194/adgeo-45-139-2018, 2018.
12. D. Koutsoyiannis, Revisiting the global hydrological cycle: is it intensifying?, Hydrology and Earth System Sciences, 24, 3899–3932, doi:10.5194/hess-24-3899-2020, 2020.
13. T. Iliopoulou, and D. Koutsoyiannis, Projecting the future of rainfall extremes: better classic than trendy, Journal of Hydrology, 588, doi:10.1016/j.jhydrol.2020.125005, 2020.
14. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, ISBN: 978-618-85370-0-2, 333 pages, Kallipos Open Academic Editions, Athens, 2021.
15. K. Glynis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Stochastic investigation of daily air temperature extremes from a global ground station network, Stochastic Environmental Research & Risk Assessment, doi:10.1007/s00477-021-02002-3, 2021.
16. P. Dimitriadis, D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021.
17. L. Katikas, P. Dimitriadis, D. Koutsoyiannis, T. Kontos, and P. Kyriakidis, A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series, Applied Energy, 295, 116873, doi:10.1016/j.apenergy.2021.116873, 2021.
18. S. Vavoulogiannis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Multiscale temporal irreversibility of streamflow and its stochastic modelling, Hydrology, 8 (2), 63, doi:10.3390/hydrology8020063, 2021.
19. P. Dimitriadis, T. Iliopoulou, G.-F. Sargentis, and D. Koutsoyiannis, Spatial Hurst–Kolmogorov Clustering, Encyclopedia, 1 (4), 1010–1025, doi:10.3390/encyclopedia1040077, 2021.