D. Koutsoyiannis, and Th. Xanthopoulos, A dynamic model for short-scale rainfall disaggregation, Hydrological Sciences Journal, 35 (3), 303–322, doi:10.1080/02626669009492431, 1990.
[doc_id=51]
[English]
The single-site dynamic disaggregation model developed and presented in this paper is a generalized step-by-step approach to stochastic disaggregation problems. The forms studied concern low-level variables with Markovian structure and normal or gamma marginal distributions. Combined with a rainfall model, the disaggregation scheme gives a rainfall generator, transforming monthly rainfall into events and hourly amounts. A particular application of the generator, based on historical data, is used to illustrate and test the model.
Full text
(1201 KB)
See also: http://dx.doi.org/10.1080/02626669009492431
Our works referenced by this work:
1. | D. Koutsoyiannis, A disaggregation model of point rainfall, PhD thesis, 310 pages, doi:10.12681/eadd/0910, National Technical University of Athens, Athens, 1988. |
Our works that reference this work:
1. | D. Koutsoyiannis, A nonlinear disaggregation method with a reduced parameter set for simulation of hydrologic series, Water Resources Research, 28 (12), 3175–3191, doi:10.1029/92WR01299, 1992. |
2. | I. Nalbantis, D. Koutsoyiannis, and Th. Xanthopoulos, Modelling the Athens water supply system, Water Resources Management, 6, 57–67, doi:10.1007/BF00872188, 1992. |
3. | D. Koutsoyiannis, A stochastic disaggregation method for design storm and flood synthesis, Journal of Hydrology, 156, 193–225, doi:10.1016/0022-1694(94)90078-7, 1994. |
4. | D. Koutsoyiannis, and A. Manetas, Simple disaggregation by accurate adjusting procedures, Water Resources Research, 32 (7), 2105–2117, doi:10.1029/96WR00488, 1996. |
5. | D. Koutsoyiannis, and C. Onof, Rainfall disaggregation using adjusting procedures on a Poisson cluster model, Journal of Hydrology, 246, 109–122, 2001. |
6. | D. Koutsoyiannis, and N. Mamassis, On the representation of hyetograph characteristics by stochastic rainfall models, Journal of Hydrology, 251, 65–87, 2001. |
7. | D. Koutsoyiannis, C. Onof, and H. S. Wheater, Multivariate rainfall disaggregation at a fine timescale, Water Resources Research, 39 (7), 1173, doi:10.1029/2002WR001600, 2003. |
8. | A. Langousis, and D. Koutsoyiannis, A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour, Journal of Hydrology, 322, 138–154, 2006. |
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Glasbey, C.A., G. Cooper, and M.B. McGechan, Disaggregation of daily rainfall by conditional simulation from a point-process model, Journal of Hydrology, 165(1-4), 1-9, 1995 |
2. | McGechan, M.B., and G. Cooper, A simulation-model operating with daily weather data to explore silage and haymaking opportunities in climatically different areas of Scotland, Agricultural Systems, 48(3), 315-343, 1995. |
3. | Khaliq, M.N., and C. Cunnane, Modelling point rainfall occurrences with the Modified Bartlett- Lewis Rectangular Pulses Model, Journal of Hydrology, 180(1-4), 109-138, 1996. |
4. | Connoly, R.D., J. Schirmer and P. K. Dunn, A daily rainfall disaggregation model, Agricultural and Forest Meteorology, 92(2), 105-117, 1998. |
5. | Heneker, T.H., M.F. Lambert and G. Kuczera, A point rainfall model for risk-based design, Journal of Hydrology, 247, 54-71, 2001. |
6. | Back, Á. J., R. Dorfman and R. Clarke, Modelagem da precipitação horária por meio do modelo de pulsos retangulares de Bartlett-Lewis modificado (Modelling hourly rainfall with modified Bartlett-Lewis model), Revista Brasileira de Recursos Hídricos, 4 (1), 5-17, 1999. |
7. | Burian, S.J., S.R. Durrans, S.J. Nix and R.E. Pitt, Training artificial neural networks to perform rainfall disaggregation, Journal of Hydrologic Engineering-ASCE, 6(1), 43-51, 2001. |
8. | Stehlik, J., and A. Bardossy, Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation, Journal of Hydrology, 256(1-2), 120-141, 2002. |
9. | #Wending, I., and W. James, Two neural networks for generation of high-resolution long-term storm rainfall compared to Ormsbee's method - Case study for Toronto, Global Solutions for Urban Drainage, 1-15, 2002. |
10. | Wendling, I., and W. James, Comparison of neural networks to Ormsbee's method for rain generation - applied to Toronto, Ontario, Journal of Water Management Modeling, 10.14796/JWMM.R215-20, 2003. |
11. | Elshamy, M.E., H.S. Wheater, N. Gedney and C. Huntingford, Evaluation of the rainfall component of a weather generator for climate impact studies, Journal of Hydrology, 326(1-4), 1-24, 2006. |
12. | Wu, S.-J., Y.-K. Tung and J.-C. Yang, Stochastic generation of hourly rainstorm events, Stochastic Environmental Research and Risk Assessment, 21(2), 195-212, 2006. |
13. | Debele, B., R. Srinivasan and J. Yves Parlange, Accuracy evaluation of weather data generation and disaggregation methods at finer timescales, Advances in Water Resources, 30(5), 1286-1300, 2007. |
14. | Damé, R.D.C.F., C.F.A. Teixeira, and V.S.S.Terra, Comparison of different methodologies to estimate intensity-duration- frequency curves for Pelotas - RS, Brazil, Engenharia Agricola, 28 (2), 245-255, 2008. |
15. | Rupp, D. E., R. F. Keim, M. Ossiander, M. Brugnach and J. S. Selker, Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation, Water Resources Research, 45, W07409, doi:10.1029/2008WR007321, 2009. |
16. | Andrés-Doménech, I., A. Montanari and J. B. Marco, Stochastic rainfall analysis for storm tank performance evaluation, Hydrol. Earth Syst. Sci., 14, 1221-1232, doi:10.5194/hess-14-1221-2010, 2010. |
17. | Jennings, S. A., M. F. Lambert and G. Kuczera, Generating synthetic high resolution rainfall time series at sites with only daily rainfall using a master-target scaling approach, Journal of Hydrology, 393 (3-4), 163-173, 2010. |
18. | Serinaldi, F., Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models, Nonlin. Processes Geophys., 17, 697-714, doi: 10.5194/npg-17-697-2010, 2010. |
19. | #Sharma, A., and R. Mehrotra, Rainfall Generation, in Rainfall: State of the Science (eds F. Y. Testik and M. Gebremichael), American Geophysical Union, Washington, DC, 10.1029/2010GM000973, 2010. |
20. | Kalra, A., and S. Ahmad, Evaluating changes and estimating seasonal precipitation for the Colorado River Basin using a stochastic nonparametric disaggregation technique, Water Resources Research, 47, W05555, doi: 10.1029/2010WR009118, 2011. |
21. | Pui, A., A. Sharma, R. Mehrotra, B. Sivakumar and E. Jeremiah, A comparison of alternatives for daily to sub-daily rainfall disaggregation, Journal of Hydrology, 470–471, 138–157, 2012. |
22. | Abdellatif, M., W. Atherton and R. Alkhaddar, Application of the stochastic model for temporal rainfall disaggregation for hydrological studies in north western England, Journal of Hydroinformatics, 15 (2), 555-567, 2013. |
23. | #Kim, S., and Y. Seo, Spatial disaggregation of areal rainfall using multilayer perceptron, International Hydrological Program, Korean National Committee, 2014. |
24. | Dunkerley, D., Intra-event intermittency of rainfall: an analysis of the metrics of rain and no-rain periods, Hydrological Processes, 29 (15), 3294-3305, 10.1002/hyp.10454, 2015. |
25. | Kim, S. and V.P. Singh, Spatial disaggregation of areal rainfall using two different artificial neural networks models, Water, 7(6), 2707-2727, 10.3390/w7062707, 2015. |
26. | Schiavo Bernardi, E., D. Allasia, R. Basso, P. Freitas Ferreira and R. Tassi, TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization, Proc. IAHS, 369, 163-168, 10.5194/piahs-369-163-2015, 2015. |
Tagged under: Stochastic disaggregation, Rainfall models, Stochastics