H. Tyralis, and D. Koutsoyiannis, Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process, *Stochastic Environmental Research & Risk Assessment*, 25 (1), 21–33, 2011.

[doc_id=983]

[English]

Various methods for estimating the self-similarity parameter (Hurst parameter, H) of a Hurst-Kolmogorov stochastic process (HKp) from a time series are available. Most of them rely on some asymptotic properties of processes with Hurst-Kolmogorov behaviour and only estimate the self-similarity parameter. Here we show that the estimation of the Hurst parameter affects the estimation of the standard deviation, a fact that was not given appropriate attention in the literature. We propose the Least Squares based on Variance estimator, and we investigate numerically its performance, which we compare to the Least Squares based on Standard Deviation estimator, as well as the maximum likelihood estimator after appropriate streamlining of the latter. These three estimators rely on the structure of the HKp and estimate simultaneously its Hurst parameter and standard deviation. In addition, we test the performance of the three methods for a range of sample sizes and H values, through a simulation study and we compare it with other estimators of the literature.

Full text is only available to the NTUA network due to copyright restrictions

**Additional material:**

- Preprint (415 KB)

**See also:**
http://dx.doi.org/10.1007/s00477-010-0408-x

**Our works referenced by this work:**

1. | D. Koutsoyiannis, Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48 (1), 3–24, doi:10.1623/hysj.48.1.3.43481, 2003. |

2. | D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007. |

**Our works that reference this work:**

1. | D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011. |

2. | D. Koutsoyiannis, A. Paschalis, and N. Theodoratos, Two-dimensional Hurst-Kolmogorov process and its application to rainfall fields, Journal of Hydrology, 398 (1-2), 91–100, 2011. |

3. | S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011. |

4. | C. Ioannou, G. Tsekouras, A. Efstratiadis, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.3787.0327, Hellenic Commission on Large Dams, 2013. |

5. | H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014. |

6. | G. Tsekouras, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy, Renewable Energy, 63, 624–633, doi:10.1016/j.renene.2013.10.018, 2014. |

7. | P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015. |

8. | D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016. |

9. | Y. Markonis, and D. Koutsoyiannis, Scale-dependence of persistence in precipitation records, Nature Climate Change, 6, 399–401, doi:10.1038/nclimate2894, 2016. |

10. | Y. Markonis, S. C. Batelis, Y. Dimakos, E. C. Moschou, and D. Koutsoyiannis, Temporal and spatial variability of rainfall over Greece, Theoretical and Applied Climatology, doi:10.1007/s00704-016-1878-7, 2016. |

11. | A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017. |

12. | F. Lombardo, E. Volpi, D. Koutsoyiannis, and F. Serinaldi, A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall, Water Resources Research, 53 (6), 4586–4605, doi:10.1002/2017WR020529, 2017. |

13. | H. Tyralis, and D. Koutsoyiannis, On the prediction of persistent processes using the output of deterministic models, Hydrological Sciences Journal, 62 (13), 2083–2102, doi:10.1080/02626667.2017.1361535, 2017. |

14. | G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Forecasting of geophysical processes using stochastic and machine learning algorithms, European Water, 59, 161–168, 2017. |

15. | T. Iliopoulou, S.M. Papalexiou, Y. Markonis, and D. Koutsoyiannis, Revisiting long-range dependence in annual precipitation, Journal of Hydrology, 556, 891–900, doi:10.1016/j.jhydrol.2016.04.015, 2018. |

16. | P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018. |

17. | H. Tyralis, P. Dimitriadis, D. Koutsoyiannis, P.E. O’Connell, K. Tzouka, and T. Iliopoulou, On the long-range dependence properties of annual precipitation using a global network of instrumental measurements, Advances in Water Resources, 111, 301–318, doi:10.1016/j.advwatres.2017.11.010, 2018. |

18. | Y. Markonis, Y. Moustakis, C. Nasika, P. Sychova, P. Dimitriadis, M. Hanel, P. Máca, and S.M. Papalexiou, Global estimation of long-term persistence in annual river runoff, Advances in Water Resources, 113, 1–12, doi:10.1016/j.advwatres.2018.01.003, 2018. |

19. | G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, One-step ahead forecasting of geophysical processes within a purely statistical framework, Geoscience Letters, 5, 12, doi:10.1186/s40562-018-0111-1, 2018. |

20. | G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Predictability of monthly temperature and precipitation using automatic time series forecasting methods, Acta Geophysica, 66 (4), 807–831, doi:10.1007/s11600-018-0120-7, 2018. |

21. | I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018. |

22. | G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Univariate time series forecasting of temperature and precipitation with a focus on machine learning algorithms: a multiple-case study from Greece, Water Resources Management, 32 (15), 5207–5239, doi:10.1007/s11269-018-2155-6, 2018. |

23. | P. Dimitriadis, K. Tzouka, D. Koutsoyiannis, H. Tyralis, A. Kalamioti, E. Lerias, and P. Voudouris, Stochastic investigation of long-term persistence in two-dimensional images of rocks, Spatial Statistics, 29, 177–191, doi:10.1016/j.spasta.2018.11.002, 2019. |

24. | G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes, Stochastic Environmental Research & Risk Assessment, doi:10.1007/s00477-018-1638-6, 2019. |

25. | T. Iliopoulou, and D. Koutsoyiannis, Revealing hidden persistence in maximum rainfall records, Hydrological Sciences Journal, 64 (14), 1673–1689, doi:10.1080/02626667.2019.1657578, 2019. |

**
Works that cite this document:
**
View on
Google Scholar
or
ResearchGate

**Other works that reference this work (this list might be obsolete):**

1. | Bakker, A. M. R., and B. J. J. M. van den Hurk, Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe, Climate Dynamics, 39 (3-4), 767-782, 2012. |

2. | Prass, T. S., J. M. Bravo, R. T. Clarke, W. Collischonn, and S. R. C. Lopes, Comparison of forecasts of mean monthly water level in the Paraguay River, Brazil, from two fractionally differenced models, Water Resour. Res., 48, W05502, doi: 10.1029/2011WR011358, 2012. |

3. | Bakker, A., J. Coelingh and B. van den Hurk, Long-term trends in the wind supply in the Netherlands, Proceedings EWEA 2012 Annual Event, Copenhagen, Denmark, 2012. |

4. | Navarro, X., F. Porée, A. Beuchée and G. Carrault, Performance analysis of Hurst exponent estimators using surrogate-data and fractional lognormal noise models: Application to breathing signals from preterm infants, Digital Signal Processing, 10.1016/j.dsp.2013.04.007, 2013. |

5. | Serinaldi, F., L. Zunino and O. Rosso, Complexity–entropy analysis of daily stream flow time series in the continental United States, Stochastic Environmental Research and Risk Assessment, 28 (7), 1685-1708, 2014. |

6. | Szolgayova, E., G. Laaha, G. Blöschl and C. Bucher, Factors influencing long range dependence in streamflow of European rivers, Hydrological Processes, 28 (4), 1573-1586, 2014. |

7. | Serinaldi, F., and C.G. Kilsby, The importance of prewhitening in change point analysis under persistence, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-015-1041-5, 2015. |

**Tagged under:**
Hurst-Kolmogorov dynamics,
Scaling