Ταυτόχρονη εκτίμηση των παραμέτρων της στοχαστικής ανέλιξης Hurst-Kolmogorov

H. Tyralis, and D. Koutsoyiannis, Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process, Stochastic Environmental Research & Risk Assessment, 25 (1), 21–33, 2011.

[Ταυτόχρονη εκτίμηση των παραμέτρων της στοχαστικής ανέλιξης Hurst-Kolmogorov]

[doc_id=983]

[Αγγλικά]

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.1007/s00477-010-0408-x

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48 (1), 3–24, doi:10.1623/hysj.48.1.3.43481, 2003.
2. D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
2. D. Koutsoyiannis, A. Paschalis, and N. Theodoratos, Two-dimensional Hurst-Kolmogorov process and its application to rainfall fields, Journal of Hydrology, 398 (1-2), 91–100, doi:10.1016/j.jhydrol.2010.12.012, 2011.
3. S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011.
4. Χ. Ιωάννου, Γ. Τσεκούρας, Α. Ευστρατιάδης, και Δ. Κουτσογιάννης, Στοχαστική ανάλυση και προσομοίωση υδρομετεωρολογικών διεργασιών για τη βελτιστοποίηση ενός υβριδικού συστήματος ανανεώσιμης ενέργειας, Πρακτικά 2ου Πανελλήνιου Συνεδρίου Φραγμάτων και Ταμιευτήρων, Αθήνα, Αίγλη Ζαππείου, doi:10.13140/RG.2.1.3787.0327, Ελληνική Επιτροπή Μεγάλων Φραγμάτων, 2013.
5. H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014.
6. G. Tsekouras, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy, Renewable Energy, 63, 624–633, doi:10.1016/j.renene.2013.10.018, 2014.
7. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
8. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
9. Y. Markonis, and D. Koutsoyiannis, Scale-dependence of persistence in precipitation records, Nature Climate Change, 6, 399–401, doi:10.1038/nclimate2894, 2016.
10. Y. Markonis, S. C. Batelis, Y. Dimakos, E. C. Moschou, and D. Koutsoyiannis, Temporal and spatial variability of rainfall over Greece, Theoretical and Applied Climatology, doi:10.1007/s00704-016-1878-7, 2016.
11. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.
12. F. Lombardo, E. Volpi, D. Koutsoyiannis, and F. Serinaldi, A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall, Water Resources Research, 53 (6), 4586–4605, doi:10.1002/2017WR020529, 2017.
13. H. Tyralis, and D. Koutsoyiannis, On the prediction of persistent processes using the output of deterministic models, Hydrological Sciences Journal, 62 (13), 2083–2102, doi:10.1080/02626667.2017.1361535, 2017.
14. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Forecasting of geophysical processes using stochastic and machine learning algorithms, European Water, 59, 161–168, 2017.
15. T. Iliopoulou, S.M. Papalexiou, Y. Markonis, and D. Koutsoyiannis, Revisiting long-range dependence in annual precipitation, Journal of Hydrology, 556, 891–900, doi:10.1016/j.jhydrol.2016.04.015, 2018.
16. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
17. H. Tyralis, P. Dimitriadis, D. Koutsoyiannis, P.E. O’Connell, K. Tzouka, and T. Iliopoulou, On the long-range dependence properties of annual precipitation using a global network of instrumental measurements, Advances in Water Resources, 111, 301–318, doi:10.1016/j.advwatres.2017.11.010, 2018.
18. Y. Markonis, Y. Moustakis, C. Nasika, P. Sychova, P. Dimitriadis, M. Hanel, P. Máca, and S.M. Papalexiou, Global estimation of long-term persistence in annual river runoff, Advances in Water Resources, 113, 1–12, doi:10.1016/j.advwatres.2018.01.003, 2018.
19. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, One-step ahead forecasting of geophysical processes within a purely statistical framework, Geoscience Letters, 5, 12, doi:10.1186/s40562-018-0111-1, 2018.
20. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Predictability of monthly temperature and precipitation using automatic time series forecasting methods, Acta Geophysica, 66 (4), 807–831, doi:10.1007/s11600-018-0120-7, 2018.
21. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.
22. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Univariate time series forecasting of temperature and precipitation with a focus on machine learning algorithms: a multiple-case study from Greece, Water Resources Management, 32 (15), 5207–5239, doi:10.1007/s11269-018-2155-6, 2018.
23. P. Dimitriadis, K. Tzouka, D. Koutsoyiannis, H. Tyralis, A. Kalamioti, E. Lerias, and P. Voudouris, Stochastic investigation of long-term persistence in two-dimensional images of rocks, Spatial Statistics, 29, 177–191, doi:10.1016/j.spasta.2018.11.002, 2019.
24. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes, Stochastic Environmental Research & Risk Assessment, doi:10.1007/s00477-018-1638-6, 2019.
25. T. Iliopoulou, and D. Koutsoyiannis, Revealing hidden persistence in maximum rainfall records, Hydrological Sciences Journal, 64 (14), 1673–1689, doi:10.1080/02626667.2019.1657578, 2019.
26. A. Efstratiadis, I. Tsoukalas, and D. Koutsoyiannis, Generalized storage-reliability-yield framework for hydroelectric reservoirs, Hydrological Sciences Journal, 66 (4), 580–599, doi:10.1080/02626667.2021.1886299, 2021.
27. P. Dimitriadis, D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021.
28. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Εκδοση 3, ISBN: 978-618-85370-0-2, 391 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2023.
29. P.E. O’Connell, G. O’Donnell, and D. Koutsoyiannis, On the spatial scale dependence of long-term persistence in global annual precipitation data and the Hurst Phenomenon, Water Resources Research, 59 (4), e2022WR033133, doi:10.1029/2022WR033133, 2023.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Bakker, A. M. R., and B. J. J. M. van den Hurk, Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe, Climate Dynamics, 39 (3-4), 767-782, 2012.
2. Prass, T. S., J. M. Bravo, R. T. Clarke, W. Collischonn, and S. R. C. Lopes, Comparison of forecasts of mean monthly water level in the Paraguay River, Brazil, from two fractionally differenced models, Water Resour. Res., 48, W05502, doi: 10.1029/2011WR011358, 2012.
3. Bakker, A., J. Coelingh and B. van den Hurk, Long-term trends in the wind supply in the Netherlands, Proceedings EWEA 2012 Annual Event, Copenhagen, Denmark, 2012.
4. Navarro, X., F. Porée, A. Beuchée and G. Carrault, Performance analysis of Hurst exponent estimators using surrogate-data and fractional lognormal noise models: Application to breathing signals from preterm infants, Digital Signal Processing, 10.1016/j.dsp.2013.04.007, 2013.
5. Serinaldi, F., L. Zunino and O. Rosso, Complexity–entropy analysis of daily stream flow time series in the continental United States, Stochastic Environmental Research and Risk Assessment, 28 (7), 1685-1708, 2014.
6. Szolgayova, E., G. Laaha, G. Blöschl and C. Bucher, Factors influencing long range dependence in streamflow of European rivers, Hydrological Processes, 28 (4), 1573-1586, 2014.
7. Serinaldi, F., and C.G. Kilsby, The importance of prewhitening in change point analysis under persistence, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-015-1041-5, 2015.

Κατηγορίες: Δυναμική Hurst-Kolmogorov, Ομοιοθεσία