Παραμετρικό μοντέλο δυνητικής εξατμοδιαπνοής: μια παγκόσμια έρευνα

A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.

[Παραμετρικό μοντέλο δυνητικής εξατμοδιαπνοής: μια παγκόσμια έρευνα]

[doc_id=1738]

[Αγγλικά]

Παρουσιάζουμε και επαληθεύουμε ένα παγκόσμιο παραμετρικό μοντέλο δυνητικής εξατμοδιαπνοής (ΡΕΤ) δύο παραμέτρων, οι οποίες εκτιμώνται μέσω βαθμονόμησης, χρησμοποιώντας ως επεξηγηματικές μεταβλητές τη θερμοκρασία και εξωγήινη ακτινοβολία. Το μοντέλο αι η διαδικασία εκτίμησης των παραμέτρων του ελέγχονται σε όλο τον πλανήτη, με χρήση της βάσης δεδομένων FAO CLIMWAT που παρέχει μέσες μηνιαίες τιμές των μετεωρολογικών εισόδων σε 4300 θέσεις παγκοσμίως. Μια προκαταρκτική ανάλυση των δεδομένων αυτών επέτρεψε την εξήγηση των κύριων μηχανισμών της ΡΕΤ παγοσμίως και εποχιακά. Στη συνέχεια , αναπτύξαμε ένα εργαλείο αυτόματης βελτιστοποίησης για τη βαθμονόμηση του μοντέλου και την παραγωγή σημειακών εκτιμήσεων της δυνητικής εξατμοδιαπνοής έναντι εκτιμήσεων με τη μέθοδο Penman-Monteith. Επίσης, πραγματοποιήσαμε εκτενείς αναλύσεις των δεδομένων εισόδου και εξόδου του μοντέλου, περιλαμβανομένης και της παραγωγής παγκόσμιων χαρτών των βελτιστοποιημένων παραμέτρων και σχετικών μέτρων επίδοσης. Ακόμη, εφαρμόσαμε τιμές των βελτιστοποιημένων παραμέτρων από παρεμβολή για να επαληθεύσουμε την προγνωστική ιακνότητα του μοντέλου μας έναντι μηνιαίων μετεωρολογικών χρονοσειρών, σε διάφορους σταθμούς στον κόσμο. Τα αποτελέσματα είναι πολύ ενθαρρυντικά, καθώς ακόμα και με τη χρήση περιληπτικής λκλιματικής πληροφορίας για τη βαθμονόμηση του μοντέλου και τη χρήση παραμέτρων από παρεμβολή ως τοπικών εκτιμητριών, το μοντέλο γενικά εξασφαλίζει αξιόπιστες εκτιμήσεις της ΡΕΤ. Σε κάποιες περιπτώσεις το μοντέλο έχει φτωχή συμπεριφορά ως προς την εκτίμηση της ΡΕΤ αναφοράς, λόγω μη ομαλών αλληλεπιδράσεων μεταξύ της θερμοκρασίας και εξωγήινης ακτινοβολίας, καθώς και επειδή οι σχετικές διεργασίες επηρεάζονται από επιπρόσθετα αίτια, π.χ. τη σχετική υγρασία και την ταχύτητα ανέμου. Ωστόσο, η ανάλυση των υπολοίπων έδειξε ότι το μοντέλο είναι συνεπές σε όρους ετίμησης παραμέτρων και εαλήθευσης. Οι εξαγόμενοι χάρτες παραμέτρων επιτρέπουν την άμεση χρήση του παραμετρικού μοντέλου οπουδήποτε στον κόσμο, παρέχοντας εκτιμήσεις της ΡΕΤ στην περίπτωση ελλιπών δεδομένων, που μποτούν να βελτιωθούν περαιτέρων με τη χρήση ενός μετεωρολογικών δειγμάτων μικρού μήκους.

PDF Πλήρες κείμενο (6428 KB)

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://www.mdpi.com/2073-4441/9/10/795

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. Δ. Κουτσογιάννης, και Θ. Ξανθόπουλος, Τεχνική Υδρολογία, Εκδοση 3, 418 pages, doi:10.13140/RG.2.1.4856.0888, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 1999.
2. A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002.
3. D. Koutsoyiannis, N. Mamassis, and A. Tegos, Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece, Water Science and Technology: Water Supply, 7 (1), 13–22, 2007.
4. A. Tegos, N. Mamassis, and D. Koutsoyiannis, Estimation of potential evapotranspiration with minimal data dependence, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 1937, doi:10.13140/RG.2.2.27222.86089, European Geosciences Union, 2009.
5. A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, doi:10.1080/02626660903526292, 2010.
6. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.
7. D. Koutsoyiannis, Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi:10.1080/02626667.2013.804626, 2013.
8. N. Malamos, and D. Koutsoyiannis, Broken line smoothing for data series interpolation by incorporating an explanatory variable with denser observations: Application to soil-water and rainfall data, Hydrological Sciences Journal, doi:10.1080/02626667.2014.899703, 2015.
9. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.
10. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.
11. N. Malamos, A. Tegos, I. L. Tsirogiannis, A. Christofides, and D. Koutsoyiannis, Implementation of a regional parametric model for potential evapotranspiration assessment, IrriMed 2015 – Modern technologies, strategies and tools for sustainable irrigation management and governance in Mediterranean agriculture, Bari, doi:10.13140/RG.2.1.3992.0725, 2015.
12. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
13. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.
14. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, European Water, 59, 303–309, 2017.
2. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, Water, 10 (2), 194, doi:10.3390/w10020194, 2018.
3. N. Malamos, and D. Koutsoyiannis, Field survey and modelling of irrigation water quality indices in a Mediterranean island catchment: A comparison between spatial interpolation methods, Hydrological Sciences Journal, 63 (10), 1447–1467, doi:10.1080/02626667.2018.1508874, 2018.
4. P. Dimitriadis, D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021.
5. P. Dimitriadis, A. Tegos, and D. Koutsoyiannis, Stochastic analysis of hourly to monthly potential evapotranspiration with a focus on the long-range dependence and application with reanalysis and ground-station data, Hydrology, 8 (4), 177, doi:10.3390/hydrology8040177, 2021.
6. A. Tegos, N. Malamos, and D. Koutsoyiannis, RASPOTION - A new global PET dataset by means of remote monthly temperature data and parametric modelling, Hydrology, 9 (2), 32, doi:10.3390/hydrology9020032, 2022.
7. N. Malamos, D. Koulouris, I. L. Tsirogiannis, and D. Koutsoyiannis, Evaluation of BOLAM fine grid weather forecasts with emphasis on hydrological applications, Hydrology, 10 (8), 162, doi:10.3390/hydrology10080162, 2023.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Elferchichi, A., G. A. Giorgio, N. Lamaddalena, M. Ragosta, and V. Telesca, Variability of temperature and its impact on reference evapotranspiration: the test case of the Apulia region (Southern Italy), Sustainability, 9(12), 2337, doi:10.3390/su9122337, 2017.
2. Li, M., R. Chu, S. Shen, and A. R. T. Islam, Quantifying climatic impact on reference evapotranspiration trends in the Huai River Basin of Eastern China, Water, 10(2), 144, doi:10.3390/w10020144, 2018.
3. Yan, N., F. Tian, B. Wu, W. Zhu, and M. Yu, Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai basin, Remote Sensing, 10(2), 332; doi:10.3390/rs10020332, 2018.
4. Li, M., R. Chu, A.R.M.T. Islam, and S. Shen, Reference evapotranspiration variation analysis and its approaches evaluation of 13 empirical models in sub-humid and humid regions: A case study of the Huai River Basin, Eastern China, Water, 10(4), 493, doi:10.3390/w10040493, 2018.
5. Hao, X., S. Zhang, W. Li, W. Duan, G. Fang, Y. Zhang , and B. Guo, The uncertainty of Penman-Monteith method and the energy balance closure problem, Journal of Geophysical Research – Atmospheres, 123(14), 7433-7443, doi:10.1029/2018JD028371, 2018.
6. Giménez, P. O., and S. G. García-Galiano, Assessing Regional Climate Models (RCMs) ensemble-driven reference evapotranspiration over Spain, Water, 10(9), 1181, doi:10.3390/w10091181, 2018.
7. Storm, M. E., R. Gouws, and L. J. Grobler, Novel measurement and verification of irrigation pumping energy conservation under incentive-based programmes, Journal of Energy in Southern Africa, 29(3), 10–21, doi:10.17159/2413-3051/2018/v29i3a3058, 2018.
8. Tam, B. Y., K. Szeto, B. Bonsal, G. Flato, A. J. Cannon, and R. Rong, CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index, Canadian Water Resources Journal, 44(1), 90-107, doi:10.1080/07011784.2018.1537812, 2019.
9. Dalezios, N. R., N. Dercas, A. Blanta, and I. N. Faraslis, Remote sensing in water balance modelling for evapotranspiration at a rural watershed in Central Greece, International Journal of Sustainable Agricultural Management and Informatics, 4(3-4), 306-337, doi:10.1504/IJSAMI.2018.099219, 2019.
10. Gan, G., Y. Liu, X. Pan, X. Zhao, M. Li, and S. Wang, Testing the symmetric assumption of complementary relationship: A comparison between the linear and nonlinear advection-aridity models in a large ephemeral lake, Water, 11(8), 1574, doi:10.3390/w11081574, 2019.
11. Zhang, T., Y. Chen, and K. Tha Paw U, Quantifying the impact of climate variables on reference evapotranspiration in Pearl River Basin, China, Hydrological Sciences Journal, 64(16), 1944-1956, doi:10.1080/02626667.2019.1662021, 2019.
12. Hua, D., X. Hao, Y. Zhang, and J. Qin, Uncertainty assessment of potential evapotranspiration in arid areas, as estimated by the Penman-Monteith method, Journal of Arid Land, 12, 166–180, doi:10.1007/s40333-020-0093-7, 2020.
13. Shirmohammadi-Aliakbarkhani, Z., and S. F. Saberali, Evaluating of eight evapotranspiration estimation methods in arid regions of Iran, Agricultural Water Management, 239, 106243, doi:10.1016/j.agwat.2020.106243, 2020.
14. Kim, C.-G., J. Lee, J. E. Lee, and H. Kim, Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods, Journal of Korea Water Resources Association, 53(9), 701-715, doi:10.3741/JKWRA.2020.53.9.701, 2020.
15. Gui, Y., Q. Wang, Y. Zhao, Y. Dong, H. Li, S. Jiang, X. He, and K. Liu, Attribution analyses of reference evapotranspiration changes in China incorporating surface resistance change response to elevated CO2, Journal of Hydrology, 599, 126387, doi:10.1016/j.jhydrol.2021.126387, 2021.
16. Mohanasundaram, S., M. M. Mekonnen, E. Haacker, C. Ray, S. Lim, and S. Shrestha, An application of GRACE mission datasets for streamflow and baseflow estimation in the Conterminous United States basins, Journal of Hydrology, 601, 126622, doi:10.1016/j.jhydrol.2021.126622, 2021.
17. Gentilucci, M., M. Bufalini, M. Materazzi, M. Barbieri, D. Aringoli, P. Farabollini, and G. Pambianchi, Calculation of potential evapotranspiration and calibration of the Hargreaves equation using geostatistical methods over the last 10 years in Central Italy, Geosciences, 11(8), 348, doi:10.3390/geosciences11080348, 2021.
18. Dos Santos, A. A., J. L. M. de Souza, and S. L. K. Rosa, Evapotranspiration with the Moretti-Jerszurki-Silva model for the Brazilian subtropical climate, Hydrological Sciences Journal, 66(16), 2267-2279, doi:10.1080/02626667.2021.1988610, 2021.
19. Stefanidis, S., and V. Alexandridis, Precipitation and potential evapotranspiration temporal variability and their relationship in two forest ecosystems in Greece, Hydrology, 8(4), 160, doi:10.3390/hydrology8040160, 2021.
20. Saggi, M. K., and S. A. Jain, Survey towards decision support system on smart irrigation scheduling using machine learning approaches, Archives of Computational Methods in Engineering, 29, 4455-4478, doi:10.1007/s11831-022-09746-3, 2022.
21. Urban, G., L. Kuchar, M. Kępińska-Kasprzak, and E. Z. Łaszyca, A climatic water balance variability during the growing season in Poland in the context of modern climate change, Meteorologische Zeitschrift, 31(5), 349-365, doi:10.1127/metz/2022/1128, 2022.
22. Hajek, O. L., and A. K. Knapp, Shifting seasonal patterns of water availability: ecosystem responses to an unappreciated dimension of climate change, New Phytologist, 233(1), 119-125, doi:10.1111/nph.17728, 2022.
23. Al-Asadi, K., A. A. Abbas, A. S. Dawood, and J. G. Duan, Calibration and modification of the Hargreaves–Samani equation for estimating daily reference evapotranspiration in Iraq, Journal of Hydrologic Engineering, 28(5), doi:10.1061/JHYEFF.HEENG-5877, 2023.
24. Islam, S., and A. K. M. R. Alam, Quantifying spatiotemporal variation of reference evapotranspiration and its contributing climatic factors in Bangladesh during 1981–2018, Russian Meteorology and Hydrology, 48(3), 253-266, doi:10.3103/S1068373923030081, 2023.
25. Stefanidis, S., A. Tegos, and V. Alexandridis, How has aridity changed at a fir (Abies Borisii-Regis) forest site in Central Greece during the past six decades? Environmental Sciences Proceedings, 26(1), 121, doi:10.3390/environsciproc2023026121, 2023.
26. Maas, E. D.v.L., and R. A. Lal, A case study of the RothC soil carbon model with potential evapotranspiration and remote sensing model inputs, Remote Sensing Applications: Society and Environment, 29, 100876, doi:10.1016/j.rsase.2022.100876, 2023.
27. Ruiz-Ortega, F. J., E. Clemente, A. Martínez-Rebollar, and J. J. Flores-Prieto, An evolutionary parsimonious approach to estimate daily reference evapotranspiration, Scientific Reports, 14, 6736, doi:10.1038/s41598-024-56770-3, 2024.

Κατηγορίες: Υδρολογικά μοντέλα, Υδρολογικές διεργασίες, Πιο πρόσφατες εργασίες, Άρθρα που αρχικώς απορρίφθηκαν, Εργασίες φοιτητών