Εξελικτικός αλγόριθμος ανόπτησης-απλόκου για ολική βελτιστοποίηση συστημάτων υδατικών πόρων

A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002.

[Εξελικτικός αλγόριθμος ανόπτησης-απλόκου για ολική βελτιστοποίηση συστημάτων υδατικών πόρων]

[doc_id=524]

[Αγγλικά]

Ο εξελικτικός αλγόριθμος ανόπτησης-απλόκου είναι μια πιθανοτική ευρετική τεχνική ολικής βελτιστοποίησης που συνδυάζει ιδέες από διαφορετικές μεθοδολογικές προσεγγίσεις, τις οποίες εμπλουτίζει με ορισμένα πρωτότυπα στοιχεία. Η κύρια σύλληψη βασίζεται σε ένα σχήμα ελεγχόμενης τυχαίας αναζήτησης, που γίνεται σύζευξη μιας γενικευμένης μεθοδολογίας κατερχόμενου απλόκου με μια διαδικασία προσομοιωμένης ανόπτησης. Ο αλγόριθμος συνδυάζει την ευρωστία της προσομοιωμένης ανόπτησης σε τραχέα προβλήματα βελτιστοποίησης, με την αποτελεσματικότητα των μεθόδων κλίσης σε απλούς χώρους αναζήτησης. Η επαναληπτική διαδικασία αναζήτησης βασίζεται σε ένα σχήμα απλόκου. Το άπλοκο αναμορφώνεται σε κάθε γενιά, αναρριχόμενο ή κατερχόμενο σύμφωνα με ένα πιθανοτικό κριτήριο. Στην πρώτη περίπτωση μετακινείται προς την κατεύθυνση του υποψήφιου τοπικού ελαχίστου βάσει μιας γενικευμένης στρατηγικής Nelder-Mead, ενώ στη δεύτερη περίπτωση εκτείνεται προς την αντίθετη κατεύθυνση, ώστε να διαφύγει από το τρέχον τοπικό ακρότατο. Σε όλες τις δυνατές κινήσεις του απλόκου, εφαρμόζεται ένας συνδυασμός προσδιοριστικών και πιθανοτικών κανόνων μετάβασης. Αρχικά, ο εξελικτικός αλγόριθμος ανόπτησης-απλόκου εξετάστηκε σε ποικιλία τυπικών συναρτήσεων αναφοράς και στη συνέχεια εφαρμόστηκε σε δύο προβλήματα ολικής βελτιστοποίησης, που ελήφθησαν από την τεχνολογία υδατικών πόρων: τη βαθμονόμηση ενός υδρολογικού μοντέλου και τη βελτιστοποίηση της λειτουργίας ενός συστήματος πολλαπλών ταμιευτήρων. Ο αλγόριθμος αποδείχθηκε πολύ αξιόπιστος ως προς τον εντοπισμό του ολικού βελτίστου, απαιτώντας λογικό υπολογιστικό χρόνο.

PDF Πλήρες κείμενο:

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.1.1038.6162

Σχετικές εργασίες:

Σημείωση:

Ιστοσελίδα αλγορίθμων βελτιστοποίησης: http://itia.ntua.gr/el/softinfo/29/

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. Δ. Κουτσογιάννης, και Α. Ευστρατιάδης, Εμπειρία από την ανάπτυξη συστημάτων υποστήριξης αποφάσεων για τη διαχείριση μεγάλης κλίμακας υδροσυστημάτων της Ελλάδας, Πρακτικά της Ημερίδας " Μελέτες και Έρευνες Υδατικών Πόρων στον Κυπριακό Χώρο", επιμέλεια Ε. Σιδηρόπουλος και Ι. Ιακωβίδης, Λευκωσία, 159–180, Τμήμα Αναπτύξεως Υδάτων Κύπρου, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη, 2003.
2. E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004.
3. A. Efstratiadis, and D. Koutsoyiannis, The multiobjective evolutionary annealing-simplex method and its application in calibrating hydrological models, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04593, doi:10.13140/RG.2.2.32963.81446, European Geosciences Union, 2005.
4. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.
5. A. Efstratiadis, and D. Koutsoyiannis, Fitting hydrological models on multiple responses using the multiobjective evolutionary annealing simplex approach, Practical hydroinformatics: Computational intelligence and technological developments in water applications, edited by R.J. Abrahart, L. M. See, and D. P. Solomatine, 259–273, doi:10.1007/978-3-540-79881-1_19, Springer, 2008.
6. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
7. Α. Ευστρατιάδης, Προσομοίωση και βελτιστοποίηση διαχείρισης υδροδοτικού συστήματος Αθήνας, 28 pages, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Ιανουάριος 2012.
8. A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013.
9. Α. Ευστρατιάδης, Δ. Μπουζιώτας, και Δ. Κουτσογιάννης, Σύστημα υποστήριξης αποφάσεων για τη διαχείριση υδροηλεκτρικών ταμιευτήρων – Εφαρμογή στο υδροσύστημα Αχελώου-Θεσσαλίας, Πρακτικά 2ου Πανελλήνιου Συνεδρίου Φραγμάτων και Ταμιευτήρων, Αθήνα, Αίγλη Ζαππείου, doi:10.13140/RG.2.1.1952.0244, Ελληνική Επιτροπή Μεγάλων Φραγμάτων, 2013.
10. A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling of temporally-varying catchments: Facets of change and the value of information, Hydrological Sciences Journal, 60 (7-8), 1438–1461, doi:10.1080/02626667.2014.982123, 2015.
11. I. Tsoukalas, P. Dimas, and C. Makropoulos, Hydrosystem optimization on a budget: Investigating the potential of surrogate based optimization techniques, 14th International Conference on Environmental Science and Technology (CEST2015), Global Network on Environmental Science and Technology, University of the Aegean, 2015.
12. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
13. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016.
14. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.
15. P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, 556, 980–992, doi:10.1016/j.jhydrol.2016.07.015, 2018.
16. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, Water, 10 (2), 194, doi:10.3390/w10020194, 2018.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. #El Mouatasim, A., and R. Ellaia, RPRGM approach for optimize the cost of electric energy of drinking water complex, JANO8 2005: 8emes Journees d’Analyse Numerique et Optimisation, 327-331, Rabat-Morocco, 2005.
2. Machado, E. S., M., da Conceição Cunha, and M. Porto, Otimização de sistemas regionais de sistemas de tratamento de efluentes e seu impacto na qualidade da água: uma revisão, Revista de Gestao de Agua da America Latina, 3(1), 57-71, 2006.
3. #Burton, A., H. Fowler, C. Kilsby, and M. Marani, Investigation of intensity and spatial representations of rainfall within stochastic rainfall model, AquaTerra: Integrated modelling of the river-sediment-soil-groundwater system; advanced tools for the management of catchment areas and river basins in the context of global change, Deliverable H1.8, 57 pp., 2007.
4. Bruen, M., Systems analysis – a new paradigm and decision support tools for the water framework directive, Hydrology and Earth System Sciences, 12(3), 739-749, 2008.
5. #Martins, J. C., and L. A. Sousa, Bioelectronic Vision: Retina Models, Evaluation Metrics and System Design, Series on Bioengineering and Biomedical Engineering, Vol. 3, 272 p., Singapore, 2009.
6. Kourakos, G., and A. Mantoglou, Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models, Advances in Water Resources, 32(4), 507-521, 2009.
7. Martins, J., P. Tomás, and L. Sousa, Neural code metrics: Analysis and application to the assessment of neural models, Neurocomputing, 72(10-12), 2337-2350, 2009.
8. #Dakhlaoui, H., Z. Bargaoui and A. Bàrdossy, Comparison of three methods using the κ-nearest neighbours approach to improve the SCE-UA algorithm for calibration of the HBV rainfall-runoff model, IAHS Publication 331, 139-153, 2009.
9. Nicklow, J., P. Reed, D. Savic, T. Dessalegne, L. Harrell, A. Chan-Hilton, M. Karamouz, B. Minsker, A. Ostfeld, A. Singh, and E. Zechman, State of the art for genetic algorithms and beyond in water resources planning and management, Journal of Water Resources Planning and Management, 136(4), 412-432, 2010.
10. Tudorache, T., and V. Bostan, Wind generators test bench. Optimal design of PI controller, Advances in Electrical and Computer Engineering, 11(3), 65-70, 2011.
11. #SIRRIMED (Sustainable use of irrigation water in the Mediterranean Region), D4.2 and D5.2 Report on Models to be Implemented in the District Information Systems (DIS) and Watershed Information Systems (WIS), 95 pp., Universidad Politécnica de Cartagena, 2011.
12. Dong, Y., S. Mihalas, A. Russell, R. Etienne-Cummings, and E. Niebur, Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains, Neural Computation, 23(11), 2833-2867, 2011.
13. Dakhlaoui, H., Z. Bargaoui, and A. Bàrdossy, Toward a more efficient calibration schema for HBV rainfall-runoff model, Journal of Hydrology, 444-445, 161-179, 2012.
14. Musharavati, F., A neural network approach for integrated water resource management, International Journal of Biological, Ecological and Environmental Sciences, 1(3), 64–71, 2012.
15. Dong, Y., S. Mihalas, S. S. Kim, T. Yoshioka, S. J. Bensmaia and E. Niebur, A simple model of mechanotransduction in primate glabrous skin, Journal of Neurophysiology, 109 (5), 1350-1359, 2013.
16. Kourakos, G., and A. Mantoglou, Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management, Journal of Hydrology, 479, 13-23, 2013.
17. #Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using radial basis function metamodels, Proceedings of 9th World Congress EWRA “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015.
18. Villani, V., D. Di Serafino, G., Rianna, and P. Mercogliano, Stochastic models for the disaggregation of precipitation time series on sub-daily scale: identification of parameters by global optimization, CMCC Research Paper, RP0256, 2015.
19. Christelis, V., and A. Mantoglou, Coastal aquifer management based on the joint use of density-dependent and sharp interface models, Water Resources Management, 30(2), 861-876, doi:10.1007/s11269-015-1195-4, 2016.
20. Tigkas, D., V. Christelis, and G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model, Environmental Processes, doi:10.1007/s40710-016-0147-1, 2016.
21. Dounia, M., D. Yassine, and H. Yahia, Calibrating conceptual rainfall runoff models using artificial intelligence, Journal of Environmental Science and Technology, 9, 257-267, doi:10.3923/jest.2016.257.267, 2016.
22. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016.
23. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions, Water Resources Management, 30(15), 5845–5859, doi:10.1007/s11269-016-1337-3, 2016.
24. #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016.
25. Ciervo, F., G. Rianna, P. Mercogliano, and M. N. Papa, Effects of climate change on shallow landslides in a small coastal catchment in southern Italy, Landslides, 14(3), 1043–1055, doi:10.1007/s10346-016-0743-1, 2017.
26. Charizopoulos, N., A. Psilovikos, and E. Zagana, A lumped conceptual approach for modeling hydrological processes: the case of Scopia catchment area, Central Greece, Environmental Earth Sciences, 76:18, doi:10.1007/s12665-017-6967-0, 2017.
27. Christelis, V., and A. Mantoglou, Physics-based and data-driven surrogate models for pumping optimization of coastal aquifers, European Water, 57, 481-488, 2017
28. Kopsiaftis, G., V. Christelis, and A. Mantoglou, Pumping optimization in coastal aquifers: Comparison of sharp interface and density dependent models, European Water, 57, 443-449, 2017.
29. Christelis, V., R. G. Regis, and A. Mantoglou, Surrogate-based pumping optimization of coastal aquifers under limited computational budgets, Journal of Hydroinformatics, 20(1), 164-176, doi:10.2166/hydro.2017.063, 2018.
30. Rozos, E., An assessment of the operational freeware management tools for multi-reservoir systems, Water Science and Technology: Water Supply, ws2018169, doi:10.2166/ws.2018.169, 2018.
31. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using seawater intrusion models of variable-fidelity and evolutionary algorithms, Water Resources Management, 33(2), 555-558, doi:10.1007/s11269-018-2116-0, 2019.
32. Kopsiaftis, G., V. Christelis, and A. Mantoglou, Comparison of sharp interface to variable density models in pumping optimisation of coastal aquifers, Water Resources Management, 33(4), 1397-409, doi:10.1007/s11269-019-2194-7, 2019.
33. Christelis, V., G. Kopsiaftis, and A. Mantoglou, Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers, Hydrological Sciences Journal, 64(3), 336-349, doi:10.1080/02626667.2019.1584400, 2019.
34. Onof, C., and L.-P. Wang, Modelling rainfall with a Bartlett–Lewis process: New developments, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2019-406 , 2019.

Κατηγορίες: Υδροσυστήματα, Βελτιστοποίηση, Εργασίες φοιτητών σε συνέδρια