Predictability of monthly temperature and precipitation using automatic time series forecasting methods

G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Predictability of monthly temperature and precipitation using automatic time series forecasting methods, Acta Geophysica, 66 (4), 807–831, doi:10.1007/s11600-018-0120-7, 2018.

[doc_id=1838]

[Αγγλικά]

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. H. Tyralis, and D. Koutsoyiannis, Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process, Stochastic Environmental Research & Risk Assessment, 25 (1), 21–33, 2011.
2. H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014.
3. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Forecasting of geophysical processes using stochastic and machine learning algorithms, European Water, 59, 161–168, 2017.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, One-step ahead forecasting of geophysical processes within a purely statistical framework, Geoscience Letters, 5, 12, doi:10.1186/s40562-018-0111-1, 2018.
2. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes, Stochastic Environmental Research & Risk Assessment, doi:10.1007/s00477-018-1638-6, 2019.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate