How extreme is extreme? An assessment of daily rainfall distribution tails

S.M. Papalexiou, D. Koutsoyiannis, and C. Makropoulos, How extreme is extreme? An assessment of daily rainfall distribution tails, Hydrology and Earth System Sciences, 17, 851–862, doi:10.5194/hess-17-851-2013, 2013.

[doc_id=1231]

[English]

The upper part of a probability distribution, usually known as the tail, governs both the magnitude and the frequency of extreme events. The tail behaviour of all probability distributions may be, loosely speaking, categorized in two families: heavy-tailed and light-tailed distributions, with the latter generating more “mild” and infrequent extremes compared to the former. This emphasizes how important for hydrological design is to assess correctly the tail behaviour. Traditionally, the wet-day daily rainfall has been described by light-tailed distributions like the Gamma, although heavier-tailed distributions have also been proposed and used, e.g. the Lognormal, the Pareto, the Kappa, and others. Here, we investigate the issue of tails for daily rainfall by comparing the up- per part of empirical distributions of thousands of records with four common theoretical tails: those of the Pareto, Lognormal, Weibull and Gamma distributions. Specifically, we use 15 029 daily rainfall records from around the world with record lengths from to 163 yr. The analysis shows that heavier-tailed distributions are in better agreement with the observed rainfall extremes than the more often used lighter tailed distributions, with clear implications on extreme event modelling and engineering design.

PDF Full text (3389 KB)

PDF Additional material:

See also: http://dx.doi.org/10.5194/hess-17-851-2013

Remarks:

The initial version of the article and the discussion in Hydrology and Earth System Sciences Discussions (9, 5757–5778, 2012) can be seen at http://dx.doi.org/10.5194/hessd-9-5757-2012.

Our works referenced by this work:

1. D. Koutsoyiannis, A probabilistic view of Hershfield's method for estimating probable maximum precipitation, Water Resources Research, 35 (4), 1313–1322, doi:10.1029/1999WR900002, 1999.
2. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation, Hydrological Sciences Journal, 49 (4), 575–590, 2004.
3. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, Hydrological Sciences Journal, 49 (4), 591–610, 2004.
4. S.M. Papalexiou, and D. Koutsoyiannis, Entropy based derivation of probability distributions: A case study to daily rainfall, Advances in Water Resources, 45, 51–57, doi:10.1016/j.advwatres.2011.11.007, 2012.
5. S.M. Papalexiou, and D. Koutsoyiannis, Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resources Research, 49 (1), 187–201, doi:10.1029/2012WR012557, 2013.

Our works that reference this work:

1. S.M. Papalexiou, and D. Koutsoyiannis, Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resources Research, 49 (1), 187–201, doi:10.1029/2012WR012557, 2013.
2. F. Lombardo, E. Volpi, D. Koutsoyiannis, and S.M. Papalexiou, Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology, Hydrology and Earth System Sciences, 18, 243–255, doi:10.5194/hess-18-243-2014, 2014.
3. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
4. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.
5. S.M. Papalexiou, and D. Koutsoyiannis, A global survey on the seasonal variation of the marginal distribution of daily precipitation, Advances in Water Resources, 94, 131–145, doi:10.1016/j.advwatres.2016.05.005, 2016.
6. S.M. Papalexiou, Y. Dialynas, and S. Grimaldi, Hershfield factor revisited: Correcting annual maximum precipitation, Journal of Hydrology, 542, 884–895, doi:10.1016/j.jhydrol.2016.09.058, 2016.
7. D. Koutsoyiannis, and S.M. Papalexiou, Extreme rainfall: Global perspective, Handbook of Applied Hydrology, Second Edition, edited by V.P. Singh, 74.1–74.16, McGraw-Hill, New York, 2017.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Breinl, K., T. Turkington and M. Stowasser, Stochastic generation of multi-site daily precipitation for applications in risk management, Journal of Hydrology, 498, 23-35, 2013.
2. #Adirosi, E., L. Baldini, F. Lombardo, F. Russo and F. Napolitano, Comparison of different fittings of experimental DSD, AIP Conference Proceedings, 1558, 1669-1672, 2013.
3. Hitchens, N. M., H. E. Brooks and R. S. Schumacher, Spatial and temporal characteristics of heavy hourly rainfall in the United States, Mon. Wea. Rev, 141, 4564–4575, 2013.
4. Panagoulia, D., and E. I. Vlahogianni, Non-linear dynamics and recurrence analysis of extreme precipitation for observed and general circulation model generated climates, Hydrological Processes, 28(4), 2281–2292, 2014.
5. Serinaldi, F., and C. G. Kilsby, Simulating daily rainfall fields over large areas for collective risk estimation, Journal of Hydrology, 10.1016/j.jhydrol.2014.02.043, 2014.
6. Serinaldi, F., and C. G. Kilsby, Rainfall extremes: Toward reconciliation after the battle of distributions, Water Resources Research, 50 (1), 336-352, 2014.
7. Breinl, K., T. Turkington and M. Stowasser, Simulating daily precipitation and temperature: a weather generation framework for assessing hydrometeorological hazards, Meteorological Applications, 10.1002/met.1459, 2014.
8. Alghazali, N. O. S., and D. A. H. Alawadi, Fitting statistical distributions of monthly rainfall for some Iraqi stations, Civil and Environmental Research, 6 (6), 40-46, 2014.
9. Neykov, N. M., P. N. Neytchev and W. Zucchini, Stochastic daily precipitation model with a heavy-tailed component, Natural Hazards and Earth System Sciences, 14 (9), 2321-2335, 2014.
10. Salinas, J. L., A. Castellarin, A. Viglione, S. Kohnová and T. R. Kjeldsen, Regional parent flood frequency distributions in Europe – Part 1: Is the GEV model suitable as a pan-European parent?, Hydrol. Earth Syst. Sci., 18, 4381-4389, 10.5194/hess-18-4381-2014, 2014.
11. #Keighley, T., T. Longden, S. Mathew and S. Trück, Quantifying Catastrophic and Climate Impacted Hazards Based on Local Expert Opinions, FEEM Working Paper No. 093.2014, 2014.
12. Serinaldi, F., and C.G. Kilsby, Stationarity is undead: Uncertainty dominates the distribution of extremes, Advances in Water Resources, 77, 17-36, 2015.
13. Li, Z., Z. Li, W. Zhao and Y. Wang, Probability modeling of precipitation extremes over two river basins in northwest of China, Advances in Meteorology, art. no. 374127, 10.1155/2015/374127, 2015.
14. Adirosi, E., L. Baldini, L. Lombardo, F. Russo, F. Napolitano, E. Volpi and A. Tokay, Comparison of different fittings of drop spectra for rainfall retrievals, Advances in Water Resources, 83, 55-67, 2015.
15. Cavanaugh, N.R., A. Gershunov, A.K. Panorska and T.J. Kozubowski, The probability distribution of intense daily precipitation, Geophysical Research Letters, 42 (5), 1560-1567, 2015.
16. Sherly, M., S. Karmakar, T. Chan and C. Rau, Design rainfall framework using multivariate parametric-nonparametric approach, J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0001256, 04015049, 2015.
17. Bellprat, O., F.C. Lott, C. Gulizia, H.R. Parker, L.A. Pampuch, I. Pinto, A. Ciavarella, P.A. Stott, Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective, Weather and Climate Extremes, 9, 36-46, 2015.

Tagged under: Extremes