A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation

A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.



The article, apart from the introduction (section 1), is organized as follows: In section 2, we review the Penman-Monteith method and its simplifications, which estimate evapotranspiration on the basis of temperature and radiation data. In section 3 we present the new parametric model, which compromises the requirements for parsimony and consistency. In section 4, we calibrate the model at the point scale, using historical meteorological data, and evaluate it against other empirical approaches. In addition, we investigate the geographical distribution of its parameters over Greece. Finally, in section 5 we summarize the outcomes of our research and discuss next research steps.

PDF Full text (819 KB)

See also: http://dx.doi.org/10.5772/52927

Our works referenced by this work:

1. D. Koutsoyiannis, and Th. Xanthopoulos, Engineering Hydrology, Edition 3, 418 pages, doi:10.13140/RG.2.1.4856.0888, National Technical University of Athens, Athens, 1999.
2. A. Tsouni, C. Contoes, D. Koutsoyiannis, P. Elias, and N. Mamassis, Estimation of actual evapotranspiration by remote sensing: Application in Thessaly Plain, Greece, Sensors, 8 (6), 3586–3600, 2008.
3. D. Koutsoyiannis, Seeking parsimony in hydrology and water resources technology (solicited), European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 11469, doi:10.13140/RG.2.2.20511.97443, European Geosciences Union, 2009.
4. S. Kozanis, A. Christofides, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Hydrognomon – open source software for the analysis of hydrological data, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12419, doi:10.13140/RG.2.2.21350.83527, European Geosciences Union, 2010.
5. N. Mamassis, A. Efstratiadis, and E. Apostolidou, Topography-adjusted solar radiation indices and their importance in hydrology, Hydrological Sciences Journal, 57 (4), 756–775, doi:10.1080/02626667.2012.670703, 2012.

Our works that reference this work:

1. A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013.
2. N. Mamassis, D. Panagoulia, and A. Novcovic, Sensitivity analysis of Penman evaporation method, Global Network for Environmental Science and Technology, 16 (4), 628–639, 2014.
3. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.
4. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.
5. T. Vergou, A. Efstratiadis, and D. Dermatas, Water balance model for evaluation of landfill malfunction due to leakage, Proceedings of ISWA 2016 World Congress, Novi Sad, Ιnternational Solid Waste Association, 2016.
6. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016.
7. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.
8. K. Papoulakos, G. Pollakis, Y. Moustakis, A. Markopoulos, T. Iliopoulou, P. Dimitriadis, D. Koutsoyiannis, and A. Efstratiadis, Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability, Energy Procedia, 125, 405–414, doi:10.1016/j.egypro.2017.08.078, 2017.
9. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.
10. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, Water, 10 (2), 194, doi:10.3390/w10020194, 2018.

Other works that reference this work (this list might be obsolete):

1. Samaras, D. A., A. Reif and K. Theodoropoulos, Evaluation of radiation-based reference evapotranspiration models under different Mediterranean climates in Central Greece, Water Resources Management, 28 (1), 207-225, 2014.
2. Tabari, H., P. H. Talaee, P. Willems, and C. Martinez, Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations, Hydrological Sciences Journal, 61(3), 610-619, doi:10.1080/02626667.2014.947293, 2016.
3. Jaber, H. S., S. Mansor, B. Pradhan, and N. Ahmad, Evaluation of SEBAL model for evapotranspiration mapping in Iraq using remote sensing and GIS, International Journal of Applied Engineering Research, 11(6), 3950-3955, 2016.
4. Kumar, D., J. Adamowski, R. Suresh, and B. Ozga-Zielinski, Estimating evapotranspiration using an extreme learning machine model: case study in North Bihar, India, Journal of Irrigation and Drainage Engineering, 04016032, doi:10.1061/(ASCE)IR.1943-4774.0001044, 2016.
5. Djaman, K., D. Rudnick, V. C. Mel, and D. Mutiibwa, Evaluation of Valiantzas’ simplified forms of the FAO-56 Penman-Monteith reference evapotranspiration model in a humid climate, Journal of Irrigation and Drainage Engineering, doi:10.1061/(ASCE)IR.1943-4774.0001191, 2017.
6. Tegos, M., I. Nalbantis, and A. Tegos, Environmental flow assessment through integrated approaches, European Water, 60, 167-173, 2017.
7. Norström, E., C. Katrantsiotis, R. H. Smittenberg, and K. Kouli, Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records, Geochimica et Cosmochimica Acta, 219, 96-110, doi:10.1016/j.gca.2017.09.029, 2017.
8. Hodam, S., S. Sarkar, A.G.R. Marak, A. Bandyopadhyay, and A. Bhadra, Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging methods, Journal of The Institution of Engineers (India): Series A, doi:10.1007/s40030-017-0241-z, 2017.
9. Mentzafou, A., S. Wagner, and E. Dimitriou, Historical trends and the long-term changes of the hydrological cycle components in a Mediterranean river basin, Science of The Total Environment, 636, 558-568, doi:10.1016/j.scitotenv.2018.04.298, 2018.

Tagged under: Hydrological models