A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula

A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.

[doc_id=1542]

[English]

Evapotranspiration is a key hydrometeorological process and its estimation is important in many fields of hydrological and agricultural sciences. Simplified estimation proves very useful in absence of a complete data set. In this respect, a parametric model based on simplification of the Penman-Monteith formulation is presented. The basic idea of the parametric model is the replacement of some of the variables and constants that are used in the standard Penman-Monteith model by regionally varying parameters, which are estimated through calibration. The model is implemented in various climates on monthly time step (USA, Germany, Spain) and compared on the same basis with four radiation-based methods (Jensen-Haise, McGuiness and Bordne, Hargreaves and Oudin) and two temperature-based (Thornthwaite and Blaney-Criddle). The methodology yields very good results with high efficiency indexes, outperforming the other models. Finally, a spatial analysis including the correlation of parameters with latitude and elevation together with their regionalization through three common spatial interpolation techniques along with a recent approach (Bilinear Surface Smoothing), is performed. Also, the model is validated against Penman-Monteith estimates in eleven stations of the well-known CIMIS network. The total framework which includes the development, the implementation, the comparison and the mapping of parameters illustrates a new parsimonious and high efficiency methodology in the assessment of potential evapotranspiration field.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

See also: http://dx.doi.org/10.1016/j.jhydrol.2015.03.024

Our works referenced by this work:

1. D. Koutsoyiannis, and Th. Xanthopoulos, Engineering Hydrology, Edition 3, 418 pages, doi:10.13140/RG.2.1.4856.0888, National Technical University of Athens, Athens, 1999.
2. A. Tegos, N. Mamassis, and D. Koutsoyiannis, Estimation of potential evapotranspiration with minimal data dependence, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 1937, doi:10.13140/RG.2.2.27222.86089, European Geosciences Union, 2009.
3. D. Koutsoyiannis, Seeking parsimony in hydrology and water resources technology (solicited), European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 11469, doi:10.13140/RG.2.2.20511.97443, European Geosciences Union, 2009.
4. S. Kozanis, A. Christofides, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Hydrognomon – open source software for the analysis of hydrological data, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12419, doi:10.13140/RG.2.2.21350.83527, European Geosciences Union, 2010.
5. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.
6. D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.

Our works that reference this work:

1. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.
2. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.
3. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.
4. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.
5. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, European Water, 59, 303–309, 2017.

Other works that reference this work (this list might be obsolete):

1. Hodam, S., S. Sarkar, A.G.R. Marak, A. Bandyopadhyay, and A. Bhadra, Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging methods, Journal of The Institution of Engineers (India): Series A, 98(4), 551-524, doi:10.1007/s40030-017-0241-z, 2017.
2. Deng, H., and J. Shao, Evapotranspiration and humidity variations in response to land cover conversions in the Three Gorges Reservoir Region, Journal of Mountain Science, doi:10.1007/s11629-016-4272-0, 2018.

Tagged under: Hydrological processes