Application of stochastic methods to double cyclostationary processes for hourly wind speed simulation

P. Dimitriadis, and D. Koutsoyiannis, Application of stochastic methods to double cyclostationary processes for hourly wind speed simulation, Energy Procedia, 76, 406–411, doi:10.1016/j.egypro.2015.07.851, 2015.



In this paper, we present a methodology to analyze processes of double cyclostationarity (e.g. daily and seasonal). This method preserves the marginal characteristics as well as the dependence structure of a process (through the use of climacogram). It consists of a normalization scheme with two periodicities. Furthermore, we apply it to a meteorological station in Greece and construct a stochastic model capable of preserving the Hurst-Kolmogorov behaviour. Finally, we produce synthetic time-series (based on aggregated Markovian processes) for the purpose of wind speed and energy production simulation (based on a proposed industrial wind turbine).

PDF Full text (1143 KB)

See also:


The pdf file with the full text contains a correction of an erratum in Equation (2)

Our works that reference this work:

1. I. Deligiannis, P. Dimitriadis, Ο. Daskalou, Y. Dimakos, and D. Koutsoyiannis, Global investigation of double periodicity οf hourly wind speed for stochastic simulation; application in Greece, Energy Procedia, 97, 278–285, doi:10.1016/j.egypro.2016.10.001, 2016.
2. M. Chalakatevaki, P. Stamou, S. Karali, V. Daniil, P. Dimitriadis, K. Tzouka, T. Iliopoulou, D. Koutsoyiannis, P. Papanicolaou, and N. Mamassis, Creating the electric energy mix in a non-connected island, Energy Procedia, 125, 425–434, doi:10.1016/j.egypro.2017.08.089, 2017.
3. E. Moschos, G. Manou, P. Dimitriadis, V. Afendoulis, D. Koutsoyiannis, and V. Tsoukala, Harnessing wind and wave resources for a Hybrid Renewable Energy System in remote islands: a combined stochastic and deterministic approach, Energy Procedia, 125, 415–424, doi:10.1016/j.egypro.2017.08.084, 2017.
4. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
5. G. Koudouris, P. Dimitriadis, T. Iliopoulou, N. Mamassis, and D. Koutsoyiannis, A stochastic model for the hourly solar radiation process for application in renewable resources management, Advances in Geosciences, 45, 139–145, doi:10.5194/adgeo-45-139-2018, 2018.
6. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, 330 pages, Edition 0, National Technical University of Athens, Athens, 2020.

Works that cite this document: View on Google Scholar or ResearchGate