A stochastic model for the hourly solar radiation process for application in renewable resources management

G. Koudouris, P. Dimitriadis, T. Iliopoulou, N. Mamassis, and D. Koutsoyiannis, A stochastic model for the hourly solar radiation process for application in renewable resources management, Advances in Geosciences, 45, 139–145, doi:10.5194/adgeo-45-139-2018, 2018.



Since the beginning of the 21st century, the scientific community has made huge leaps to exploit renewable energy sources, with solar radiation being one of the most important. However, the variability of solar radiation has a significant impact on solar energy conversion systems, such as in photovoltaic systems, characterized by a fast and nonlinear response to incident solar radiation. The performance prediction of these systems is typically based on hourly or daily data because those are usually available at these time scales. The aim of this work is to investigate the stochastic nature and time evolution of the solar radiation process for daily and hourly scale, with the ultimate goal of creating a new cyclostationary stochastic model capable of reproducing the dependence structure and the marginal distribution of hourly solar radiation via the clearness index KT .

PDF Full text (4911 KB)

Our works referenced by this work:

1. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.
2. D. Koutsoyiannis, H. Yao, and A. Georgakakos, Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods, Hydrological Sciences Journal, 53 (1), 142–164, doi:10.1623/hysj.53.1.142, 2008.
3. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
4. D. Koutsoyiannis, Hurst-Kolmogorov dynamics as a result of extremal entropy production, Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi:10.1016/j.physa.2010.12.035, 2011.
5. G. Tsekouras, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy, Renewable Energy, 63, 624–633, doi:10.1016/j.renene.2013.10.018, 2014.
6. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
7. P. Dimitriadis, and D. Koutsoyiannis, Application of stochastic methods to double cyclostationary processes for hourly wind speed simulation, Energy Procedia, 76, 406–411, doi:10.1016/j.egypro.2015.07.851, 2015.
8. I. Deligiannis, P. Dimitriadis, Ο. Daskalou, Y. Dimakos, and D. Koutsoyiannis, Global investigation of double periodicity οf hourly wind speed for stochastic simulation; application in Greece, Energy Procedia, 97, 278–285, doi:10.1016/j.egypro.2016.10.001, 2016.
9. G. Koudouris, P. Dimitriadis, T. Iliopoulou, N. Mamassis, and D. Koutsoyiannis, Investigation on the stochastic nature of the solar radiation process, Energy Procedia, 125, 398–404, 2017.
10. E. Moschos, G. Manou, P. Dimitriadis, V. Afendoulis, D. Koutsoyiannis, and V. Tsoukala, Harnessing wind and wave resources for a Hybrid Renewable Energy System in remote islands: a combined stochastic and deterministic approach, Energy Procedia, 125, 415–424, doi:10.1016/j.egypro.2017.08.084, 2017.
11. A. Pizarro, P. Dimitriadis, M. Chalakatevaki, C. Samela, S. Manfreda, and D. Koutsoyiannis, An integrated stochastic model of the river discharge process with emphasis on floods and bridge scour, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-8271, European Geosciences Union, 2018.

Works that cite this document: View on Google Scholar or ResearchGate

Tagged under: Students' works presented in conferences