Hydrosystem optimization on a budget: Investigating the potential of surrogate based optimization techniques

I. Tsoukalas, P. Dimas, and C. Makropoulos, Hydrosystem optimization on a budget: Investigating the potential of surrogate based optimization techniques, 14th International Conference on Environmental Science and Technology (CEST2015), Global Network on Environmental Science and Technology, University of the Aegean, 2015.



Development of uncertainty-aware operational rules for multi-reservoir systems is a demanding and challenging task due to the complexity of the system dynamics, the number of decision variables and the hydrological uncertainty. In order to overcome this issue the parsimonious parameterization-simulation-optimization (PSO) framework is employed coupled with stochastically generated hydrological time-series. However, when the simulation model requires long computational time this coupling imposes a computational barrier to the framework. The purpose of this paper is threefold: a) Investigate the potential of Efficient Global Optimization (EGO) algorithm (and its variants) which is capable of reaching global optima within a few simulation model evaluations (~500 or less). b) Extend the capabilities of WEAP21 water resources management model by using it within PSO framework (named WEAP21-PSO) and c) Validate and compare the results of WEAP21-PSO using the well-known hydrosystem management model Hydronomeas coupled with Evolutionary Annealing Simplex (EAS) optimization algorithm. Results confirm that EGO has the potential and the capabilities to handle computationally demanding problems and furthermore is capable of locating the optimal solution within few simulation model evaluations and that the WEAP21-PSO framework performs well at the task at hand.

PDF Full text (475 KB)

See also: http://cest.gnest.org/cest15proceedings/public_html/papers/cest2015_00162_oral_paper.pdf

Our works referenced by this work:

1. A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002.
2. D. Koutsoyiannis, A. Efstratiadis, and G. Karavokiros, A decision support tool for the management of multi-reservoir systems, Journal of the American Water Resources Association, 38 (4), 945–958, doi:10.1111/j.1752-1688.2002.tb05536.x, 2002.
3. D. Koutsoyiannis, and A. Economou, Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems, Water Resources Research, 39 (6), 1170, doi:10.1029/2003WR002148, 2003.
4. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
5. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, The parameterization-simulation-optimization framework for the management of hydroelectric reservoir systems, Hydrology and Society, EGU Leonardo Topical Conference Series on the hydrological cycle 2012, Torino, doi:10.13140/RG.2.2.36437.22243, European Geosciences Union, 2012.
6. P. Dimas, D. Bouziotas, A. Efstratiadis, and D. Koutsoyiannis, A holistic approach towards optimal planning of hybrid renewable energy systems: Combining hydroelectric and wind energy, European Geosciences Union General Assembly 2014, Geophysical Research Abstracts, Vol. 16, Vienna, EGU2014-5851, doi:10.13140/RG.2.2.28854.70723, European Geosciences Union, 2014.
7. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
8. I. Tsoukalas, and C. Makropoulos, Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty, Environmental Modelling and Software, 69, 396–413, doi:10.1016/j.envsoft.2014.09.023, 2015.

Our works that reference this work:

1. P. Dimas, D. Bouziotas, D. Nikolopoulos, A. Efstratiadis, and D. Koutsoyiannis, Framework for optimal management of hydroelectric reservoirs through pumped storage: Investigation of Acheloos-Thessaly and Aliakmon hydrosystems, Proceedings of 3rd Hellenic Conference on Dams and Reservoirs, Zappeion, Hellenic Commission on Large Dams, Athens, 2017.