Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty

I. Tsoukalas, and C. Makropoulos, Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty, Environmental Modelling and Software, 69, 396–413, doi:10.1016/j.envsoft.2014.09.023, 2015.



Developing long term operation rules for multi-reservoir systems is complicated due to the number of decision variables, the non-linearity of system dynamics and the hydrological uncertainty. This uncertainty can be addressed by coupling simulation models with multi-objective optimisation algorithms driven by stochastically generated hydrological timeseries but the computational effort required imposes barriers to the exploration of the solution space. The paper addresses this by (a) employing a parsimonious multi-objective parameterization-simulation-optimization (PSO) framework, which incorporates hydrological uncertainty through stochastic simulation and allows the use of probabilistic objective functions and (b) by investigating the potential of multi-objective surrogate based optimisation (MOSBO) to significantly reduce the resulting computational effort. Three MOSBO algorithms are compared against two multi-objective evolutionary algorithms. Results suggest that MOSBOs are indeed able to provide robust, uncertainty-aware operation rules much faster, without significant loss of neither the generality of evolutionary algorithms nor of the knowledge embedded in domain-specific models.

Full text is only available to the NTUA network due to copyright restrictions

Our works referenced by this work:

1. I. Nalbantis, and D. Koutsoyiannis, A parametric rule for planning and management of multiple reservoir systems, Water Resources Research, 33 (9), 2165–2177, doi:10.1029/97WR01034, 1997.
2. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000.
3. D. Koutsoyiannis, A. Efstratiadis, and G. Karavokiros, A decision support tool for the management of multi-reservoir systems, Journal of the American Water Resources Association, 38 (4), 945–958, doi:10.1111/j.1752-1688.2002.tb05536.x, 2002.
4. D. Koutsoyiannis, and A. Economou, Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems, Water Resources Research, 39 (6), 1170, doi:10.1029/2003WR002148, 2003.
5. A. Efstratiadis, and D. Koutsoyiannis, Castalia (version 2.0) - A system for stochastic simulation of hydrological variables, Modernisation of the supervision and management of the water resource system of Athens, Report 23, 103 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2004.
6. D. Koutsoyiannis, Stochastic simulation of hydrosystems, Water Encyclopedia, Vol. 4, Surface and Agricultural Water, edited by J. H. Lehr and J. Keeley, 421–430, doi:10.1002/047147844X.sw913, Wiley, New York, 2005.
7. A. Efstratiadis, D. Koutsoyiannis, and S. Kozanis, Theoretical documentation of stochastic simulation of hydrological variables model "Castalia", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 3, 61 pages, doi:10.13140/RG.2.2.30224.40966, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, September 2005.
8. A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, doi:10.1080/02626660903526292, 2010.
9. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
10. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, The parameterization-simulation-optimization framework for the management of hydroelectric reservoir systems, Hydrology and Society, EGU Leonardo Topical Conference Series on the hydrological cycle 2012, Torino, doi:10.13140/RG.2.2.36437.22243, European Geosciences Union, 2012.

Our works that reference this work:

1. I. Tsoukalas, and C. Makropoulos, A surrogate based optimization approach for the development of uncertainty-aware reservoir operational rules: the case of Nestos hydrosystem, Water Resources Management, 29 (13), 4719–4734, doi:10.1007/s11269-015-1086-8, 2015.
2. I. Tsoukalas, P. Dimas, and C. Makropoulos, Hydrosystem optimization on a budget: Investigating the potential of surrogate based optimization techniques, 14th International Conference on Environmental Science and Technology (CEST2015), Global Network on Environmental Science and Technology, University of the Aegean, 2015.
3. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
4. P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, 556, 980–992, doi:10.1016/j.jhydrol.2016.07.015, 2018.
5. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.
6. I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure, Journal of Hydrology, doi:10.1016/j.jhydrol.2019.05.017, 2019.

Other works that reference this work (this list might be obsolete):

1. Müller, R., and N. Schütze, Multi-objective optimization of multi-purpose multi-reservoir systems under high reliability constraints, Environmental Earth Sciences, 75:1278, doi:10.1007/s12665-016-6076-5, 2016.
2. Christelis, V., and A. G. Hughes, Metamodel-assisted analysis of an integrated model composition: an example using linked surface water – groundwater models, Environmental Modelling and Software, doi:10.1016/j.envsoft.2018.05.004, 2018.
3. Christelis, V., G. Kopsiaftis, and A. Mantoglou, Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers, Hydrological Sciences Journal, doi:10.1080/02626667.2019.1584400, 2019.

Tagged under: Hydrosystems, Optimization