A web-based platform for water efficient households

P. Kossieris, S. Kozanis, A. Hashmi, E. Katsiri, L. Vamvakeridou-Lyroudia, R. Farmani, C. Makropoulos, and D. Savic, A web-based platform for water efficient households, Procedia Engineering, 89, 1128–1135, 2014.

[doc_id=1590]

[English]

The advent of ICT services on water sector offers new perspective towards sustainable water management. This paper presents an innovative web-based platform, targeting primarily the household end-users. The platform enables consumers to monitor and control, on real-time basis, the water and energy consumption of their household providing valuable information and feedback. At the same time, the platform further supports end-users to modify and improve their consumption profile via an interactive educational process that comprises a variety of online tools and applications. This paper discusses the rationale, structure and technologies upon which the platform has been developed and presents an early prototype of the various tools, applications and facilities.

PDF Full text (1131 KB)

Our works referenced by this work:

1. A. Christofides, S. Kozanis, G. Karavokiros, Y. Markonis, and A. Efstratiadis, Enhydris: A free database system for the storage and management of hydrological and meteorological data, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 8760, European Geosciences Union, 2011.
2. P. Kossieris, Panayiotakis, K. Tzouka, E. Rozos, and C. Makropoulos, An e-Learning approach for improving household water efficiency, Procedia Engineering, WDSA 2014, Bari, Italy, Water Distribution Systems Analysis, 2014.

Our works that reference this work:

1. P. Kossieris, and C. Makropoulos, Exploring the statistical and distributional properties of residential water demand at fine time scales, Water, 10 (10), 1481, doi:10.3390/w10101481, 2018.
2. G. Moraitis, D. Nikolopoulos, D. Bouziotas, A. Lykou, G. Karavokiros, and C. Makropoulos, Quantifying failure for critical water Infrastructures under cyber-physical threats, Journal of Environmental Engineering, 146 (9), doi:10.1061/(ASCE)EE.1943-7870.0001765, 2020.