Theoretical documentation of stochastic simulation of hydrological variables model "Castalia"

A. Efstratiadis, D. Koutsoyiannis, and S. Kozanis, Theoretical documentation of stochastic simulation of hydrological variables model "Castalia", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 3, 61 pages, doi:10.13140/RG.2.2.30224.40966, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, September 2005.

[doc_id=742]

[Greek]

This report describes a system for the stochastic simulation and forecast of hydrologic variables. More specifically, an original two-level multivariate scheme was introduced, appropriate for preserving the most important statistics of the historical time series and reproducing characteristic peculiarities of hydrologic processes such as persistence, periodicity and skewness. The mathematical model was implemented in a computer package, named Castalia, and it was applied for the generation of synthetic hydrologic time series within the simulation models the are components of the decision support systems for the management of hydro-systems.

PDF Full text (1377 KB)

See also: http://dx.doi.org/10.13140/RG.2.2.30224.40966

Related project: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

Our works that reference this work:

1. I. Tsoukalas, and C. Makropoulos, Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty, Environmental Modelling and Software, 69, 396–413, doi:10.1016/j.envsoft.2014.09.023, 2015.
2. I. Tsoukalas, and C. Makropoulos, A surrogate based optimization approach for the development of uncertainty-aware reservoir operational rules: the case of Nestos hydrosystem, Water Resources Management, 29 (13), 4719–4734, doi:10.1007/s11269-015-1086-8, 2015.

Other works that reference this work (this list might be obsolete):

1. Bekri, E., M. Disse, P. Yannopoulos, Optimizing water allocation under uncertain system conditions in Alfeios River Basin (Greece), Part A: Two-stage stochastic programming model with deterministic boundary intervals, Water, 7(10), 5305-5344, doi:10.3390/w7105305, 2015.
2. Bekri, E., M. Disse, P. Yannopoulos, Optimizing water allocation under uncertain system conditions in Alfeios River Basin (Greece), Part B: Fuzzy-boundary intervals combined with multi-stage stochastic programming Model, Water, 7(10), 6427-6466, doi:10.3390/w7116427, 2015.

Tagged under: Software, Stochastics