Theoretical documentation of model for simulating and optimising the management of water resources "Hydronomeas"

A. Efstratiadis, G. Karavokiros, and D. Koutsoyiannis, Theoretical documentation of model for simulating and optimising the management of water resources "Hydronomeas", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 9, 91 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2007.

[doc_id=756]

[Greek]

The subject of the report is the development of the software system HYDRONOMEAS, which is an operational tool for the management of complex water resource systems. The model is applicable to a wide range of hydrosystems, consisting of river branches, reservoirs, boreholes, pumping and hydropower stations, aqueduct networks, demand points, etc. After a general overview of the water resources management problem and a short presentation of some well-recognized decision support systems, we describe the theoretical background of the model, which implements the parameterisation-simulation-optimisation scheme. The former refers to the formulation of parametric control rules for the major infrastructures (reservoirs, boreholes), where the number of parameters is kept as low as possible. Simulation is applied to faithfully represent the processes. Specifically, real economic values in addition to virtual costs are assigned to network components to preserve the physical constraints and water use priorities, ensuring also the lowest-cost transportation path of water from the sources to the consumption. Finally, optimisation is applied to derive the optimal management policy on the basis of multiple performance criteria, thus ensuring simultaneous minimisation of the risk and cost of decision-making. Note that the modelling framework adopts a stochastic approach, providing predictions for all hydrosystem fluxes (storages, discharges, withdrawals) on the basis of synthetic scenarios of inflows. The last part of the report focus on the practical use of the model, as a stand-alone system as well as in co-operation with other modules developed within the ODYSSEUS research project.

PDF Full text (2701 KB)

Related project: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

Our works that reference this work:

1. A. Efstratiadis, Simulation and optimization of the management of the water resource system of Athens, 28 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, January 2012.

Other works that reference this work (this list might be obsolete):

1. #Mackey, R., The climate dynamics of total solar variability, 16th Natural Resources Commission Coastal Conference 2007, Australia, 2007.
2. #Strosser P., J. Roussard, B. Grandmougin, M. Kossida, I. Kyriazopoulou, J. Berbel, S. Kolberg, J. A. Rodríguez-Díaz, P. Montesinos, J. Joyce, T. Dworak, M. Berglund, and C. Laaser, EU Water saving potential (Part 2 – Case Studies), Berlin, Allemagne, Ecologic – Institute for International and European Environmental Policy, 101 pp., 2007.

Tagged under: Course bibliography: Water Resources Management, Hydrosystems, Optimization, Software