Navigation

One decade of multiobjective calibration approaches in hydrological modelling: a review

A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, 2010.

[doc_id=924]

[English]

One decade after the first publications on multiobjective hydrological calibration, we summarize the experience gained so far, by underlining the key perspectives offered by such approaches to improve parameter identifiability. After reviewing the fundamentals of vector optimization theory and the algorithmic issues, we link the multicriteria calibration approach with the concepts of uncertainty and equifinality. Specifically, the multicriteria framework enables recognizing and handling errors and uncertainties, and detecting prominent behavioural solutions with acceptable trade-offs. Particularly in models of complex parameterization, a multiobjective approach becomes essential for improving the identifiability of parameters and augmenting the information contained in calibration, by means of both multiresponse measurements and empirical metrics (“soft” data), which account for the hydrological expertise. Based on the literature review, we also provide alternative techniques to treat with conflicting and non-commeasurable criteria, and hybrid strategies to utilize the information gained towards identifying promising compromise solutions that ensure consistent and reliable calibrations.

PDF Full text (290 KB)

PDF Additional material:

See also: http://dx.doi.org/10.1080/02626660903526292

Our works referenced by this work:

1. E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004.
2. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.
3. A. Efstratiadis, and D. Koutsoyiannis, Fitting hydrological models on multiple responses using the multiobjective evolutionary annealing simplex approach, Practical hydroinformatics: Computational intelligence and technological developments in water applications, edited by R.J. Abrahart, L. M. See, and D. P. Solomatine, 259–273, doi:10.1007/978-3-540-79881-1_19, Springer, 2008.
4. A. Efstratiadis, and D. Koutsoyiannis, On the practical use of multiobjective optimisation in hydrological model calibration, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 2326, doi:10.13140/RG.2.2.10445.64480, European Geosciences Union, 2009.

Our works that reference this work:

1. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
2. J. A. P. Pollacco, B. P. Mohanty, and A. Efstratiadis, Weighted objective function selector algorithm for parameter estimation of SVAT models with remote sensing data, Water Resources Research, 49 (10), 6959–6978, doi:10.1002/wrcr.20554, 2013.
3. A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling of temporally-varying catchments: Facets of change and the value of information, Hydrological Sciences Journal, 60 (7-8), 1438–1461, doi:10.1080/02626667.2014.982123, 2015.
4. I. Tsoukalas, and C. Makropoulos, Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty, Environmental Modelling and Software, 69, 396–413, doi:10.1016/j.envsoft.2014.09.023, 2015.
5. I. Tsoukalas, and C. Makropoulos, A surrogate based optimization approach for the development of uncertainty-aware reservoir operational rules: the case of Nestos hydrosystem, Water Resources Management, 29 (13), 4719–4734, doi:10.1007/s11269-015-1086-8, 2015.
6. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
7. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016, (in review).

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Booij, M. J., and M. S. Krol, Balance between calibration objectives in a conceptual hydrological model, Hydrological Sciences Journal, 55(6), 1017-1032, 2010.
2. Moussa, R., When monstrosity can be beautiful while normality can be ugly: assessing the performance of event-based flood models, Hydrological Sciences Journal, 55(6), 1074-1084, 2010.
3. Moussu, F., L. Oudin, V. Plagnes, A. Mangin, and H. Bendjoudi, A multi-objective calibration framework for rainfall-discharge models applied to karst systems, Journal of Hydrology, 400(3-4), 364-376, 2011.
4. Guinot, V., B. Cappelaere, C. Delenne, and D. Ruelland, Towards improved criteria for hydrological model calibration: Theoretical analysis of distance- and weak form-based functions, Journal of Hydrology, 401(1-2), 1-13, 2011.
5. Peel, M. C., and G. Blöschl, Hydrological modelling in a changing world, Progress in Physical Geography, 35 (2), 249-261, 2011.
6. Ford, D. E., and M. C. Kennedy, Assessment of uncertainty in functional–structural plant models, Annals of Botany, 108 (6), 1043-1053, 2011.
7. #Shinma, T. A., and L. F. R. Reis, Multiobjective automatic calibration of the storm water management model (SWMM) using non-dominated sorting genetic algorithm II (NSGA-II), Proceedings of the 2011 World Environmental and Water Resources Congress: Bearing Knowledge for Sustainability, 598-607, 2011.
8. Mediero, L., L. Garrote and F. J. Martín-Carrasco, Probabilistic calibration of a distributed hydrological model for flood forecasting, Hydrological Sciences Journal, 56(7), 1129–1149, 2011.
9. Kennedy, M. C., and E. D. Ford, Using multicriteria analysis of simulation models to understand complex biological systems, BioScience, 61(12), 994–1004, 2011.
10. #Van Hoey, S., P. Seuntjens, J. van der Kwast, J.-L. de Kok, G. Engelen, and I. Nopens, Flexible framework for diagnosing alternative model structures through sensitivity and uncertainty analysis, In: Chan, F., D. Marinova, and R. S. Anderssen (eds.), MODSIM2011, 19th International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, December 2011, pp. 3924-3930, ISBN: 978-0-9872143-1-7, 2011.
11. Reed, P. M., and J. B. Kollat, Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty, Advances in Water Resources, 35, 55-68, 2012.
12. Pushpalatha, R., C. Perrin, N. Le Moine, and V. Andréassian, A review of efficiency criteria suitable for evaluating low–flow simulations, Journal of Hydrology, 420-421, 171-182, 2012.
13. Ruelland, D., S. Ardoin-Bardin, L. Collet, and P. Roucou, Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change, Journal of Hydrology, 424-425, 207-216, 2012.
14. Andréassian, V., N. Le Moine, C. Perrin, M.-H. Ramos, L. Oudin, T. Mathevet, J. Lerat, and L. Berthet, All that glitters is not gold: the case of calibrating hydrological models, Hydrological Processes, 26(14), 2206-2210, 2012.
15. Kollat, J. B., P. M. Reed, and T. Wagener, When are multiobjective calibration trade-offs in hydrologic models meaningful?, Water Resources Research, 48, W03520, 2012.
16. Dumedah, G., A. A. Berg, and M. Wineberg, Evaluating autoselection methods used for choosing solutions from Pareto-optimal set: Does nondominance persist from calibration to validation phase? Journal of Hydrologic Engineering, 17(1), 150-159, 2012.
17. Hill, M. C., D. Kavetski, M. Clark, M. Ye, and D. Lu, Uncertainty quantification 2012: Uncertainty quantification for environmental models, Society for Industrial and Applied Mathematics News, 45(9), 2012.
18. Rye, C. J., I. Willis, N. S. Arnold, and J. Kohler, On the need for automated multi-objective optimization and uncertainty estimation of glacier mass balance models, Journal of Geophysical Research, 117, F02005, doi: 10.1029/2011JF002184, 2012.
19. Rothfuss, Y., I. Braud, N. Le Moine, P. Biron, J.-L. Durand, M. Vauclin, and T. Bariac, Factors controlling the isotopic partitioning between soil evaporation and plant transpiration: assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions, Journal of Hydrology, 442-443, 161-179, 2012.
20. Peng, W., R. V. Mayorga, and S. Imran, A rapid fuzzy optimisation approach to multiple sources water blending problem in water distribution systems, Urban Water Journal, 9(3), 177-187, 2012.
21. Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa, Hybrid fitting of a hydrosystem model: Long term insight into the Beauce aquifer functioning (France), Water Recourses Research, 48, W05509, DOI: 10.1029/2011WR011092, 2012.
22. Pollacco, J. A. P., and B. P. Mohanty, Uncertainties of water fluxes in SVAT models: inverting surface soil moisture and evapotranspiration retrieved from remote sensing, Vadose Zone Journal, 11(3), vzj2011.0167, 2012.
23. Muleta, M. K., Model performance sensitivity to objective function during automated calibrations, Journal of Hydrologic Engineering, 17(6), 756-767, 2012.
24. Dumedah, G., Formulation of the evolutionary-based data assimilation and its implementation in hydrological forecasting, Water Resources Management, 26(13), 3853-3870, 2012.
25. Reichert, P., and N. Schuwirth, Linking statistical bias description to multiobjective model calibration, Water Resources Research, 48, W09543, doi:10.1029/2011WR011391, 2012.
26. Price, K., S. T. Purucker, S. R. Kraemer, and J. Babendreier, Tradeoffs among watershed model calibration targets for parameter estimation, Water Resources Research, 48, W10542, doi:10.1029/2012WR012005, 2012.
27. Krauße, T., J. Cullmann, P. Saile, and G. H. Schmitz, Robust multi-objective calibration strategies – possibilities for improving flood forecasting, Hydrology and Earth System Sciences, 16, 3579-3606, 2012.
28. Koskela, J. J., B. Croke, H. Koivusalo, A. Jakeman, and T. Kokkonen, Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment, Water Resources Research, 48, W11513, doi: 10.1029/2011WR011773, 2012.
29. Jarvis, N., and M. Larsbo, MACRO (V5.2): Model use, calibration, and validation, Transactions of the ASABE, 55(4), 1413-1423, 2012.
30. Hallema, D. W., R. Moussa, P. Andrieux, and M. Voltz, Parameterisation and multi-criteria calibration of a distributed storm flow model applied to a Mediterranean agricultural catchment, Hydrological Processes, 27(10), 1379-1398, 2013.
31. Gharari, S., M. Hrachowitz, F. Fenicia and H. H. G. Savenije, An approach to identify time consistent model parameters: sub-period calibration, Hydrology and Earth System Sciences, 17, 149-161, 10.5194/hess-17-149-2013, 2013.
32. Kasprzyk, J. R, S. Nataraj, P. M. Reed, and R. J. Lempert, Many objective robust decision making for complex environmental systems undergoing change, Environmental Modelling & Software, 42, 55-71, 2013.
33. Reed, P. M., D. Hadka, J. D. Herman, J. R. Kasprzyk, and J. B. Kollat, Evolutionary multiobjective optimization in water resources: the past, present, and future, Advances in Water Resources, 51, 438-456, 2013.
34. Spaaks, J. H. and W. Bouten, Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates, Hydrology and Earth System Sciences, 17, 3455–3472, 2013.
35. Wöhling, T., L. Samaniego, and R. Kumar, Evaluating multiple performance criteria to calibrate the distributed hydrological model of the upper Neckar catchment, Environmental Earth Sciences, 69(2), 453-468, 2013.
36. Ghimire, S. R., and J. M. Johnston, Impacts of domestic and agricultural rainwater harvesting systems on watershed hydrology: A case study in the Albemarle-Pamlico river basins (USA), Ecohydrology & Hydrobiology, 13(2), 159-171, 2013.
37. Hartmann, A., T. Wagener, A. Rimmer, J. Lange, H. Brielmann, and M. Weiler, Testing the realism of model structures to identify karst system processes using water quality and quantity signatures, Water Resources Research, 49(6), 3345-3358, 2013.
38. Hill, M. C., C. C. Faunt, W. R. Belcher, D. S. Sweetkind, C. R. Tiedeman and D. Kavetski, Knowledge, transparency, and refutability in groundwater models, an example from the Death Valley regional groundwater flow system, Physics and Chemistry of the Earth, 64, 105-116, 2013.
39. Muñoz, E., J. L. Arumí and D. Rivera, Watersheds are not static: Implications of climate variability and hydrologic dynamics in modeling [Las cuencas no son estacionarias: implicancias de la variabilidad climática y dinámicas hidrológicas en la modelación, Bosque, 34 (1), 7-11, 2013.
40. Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013.
41. Xu, C., H. Chen, and S. Guo, Hydrological modeling in a changing environment: issues and challenges, Journal of Water Resources Research, 2, 85-95, 2013.
42. Ramin, M., and G. B. Arhonditsis, Bayesian calibration of mathematical models: Optimization of model structure and examination of the role of process error covariance, Ecological Informatics, 18, 107-116, 2013.
43. Dumedah, G., and P. Coulibaly, Evaluating forecasting performance for data assimilation methods: the Ensemble Kalman Filter, the Particle Filter, and the Evolutionary-based assimilation Advances in Water Resources, 60, 47-63, 2013.
44. Wöhling, T., S. Gayler, E. Priesack, J. Ingwersen, H.-D. Wizemann, P. Högy, M. Cuntz, S. Attinger, V. Wulfmeyer, and T. Streck, Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5, Water Resources Research, 49(12), 8200–8221, 2013.
45. Romanowicz, R., M. Osuch and M. Grabowiecka, On the choice of calibration periods and objective functions: A practical guide to model parameter identification, Acta Geophysica, 61(6), 1477-1503, 10.2478/s11600-013-0157-6, 2013.
46. Rientjes, T.H.M., L.P. Muthuwatta, M.G. Bos, M.J. Booij, and H.A. Bhatti, Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration, Journal of Hydrology, 505, 276-290, 2013.
47. Guerrero, J. L., I. K. Westerberg, S. Halldin, L.-C. Lundin, and C.-Y. Xu, Exploring the hydrological robustness of model-parameter values with alpha shapes, Water Resources Research, 49 (10), 6700-6715, 2013.
48. Hsie, M., S. W. Yan and N. F. Pan, Improvement of rainfall-runoff simulations using the Runoff-Scale Weighting Method, Journal of Hydrologic Engineering, 19(7), 1330-1339, 10.1061/(ASCE)HE.1943-5584.0000921, 2014.
49. Gharari, S., M. Shafiei, M. Hrachowitz, F. Fenicia, H. V. Gupta, and H. H. G. Savenije, A constraint-based search algorithm for parameter identification of environmental models, Hydrology and Earth System Sciences, 18, 4861-4870, doi:10.5194/hess-18-4861-2014, 2014.
50. Shinma, T. A., and L. F. A. Reis, Incorporating multi-event and multi-site data in the calibration of SWMM, Procedia Engineering, 70, 75-84, 2014.
51. Coron, L., V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx, On the lack of robustness of hydrologic models regarding water balance simulation – a diagnostic approach on 20 mountainous catchments using three models of increasing complexity, Hydrology and Earth System Sciences, 18, 727-746, 2014.
52. Dumedah, G., and J. P. Walker, Evaluation of model parameter convergence when using data assimilation for soil moisture estimation, Journal of Hydrometeorology, 15(1), 359-375, 2014.
53. Black, D. C., P. J. Wallbrink, and P. W. Jordan, Towards best practice implementation and application of models for analysis of water resources management scenarios, Environmental Modelling and Software, 52, 136-148, 2014.
54. Loukas, A., and L. Vasiliades, Streamflow simulation methods for ungauged and poorly gauged watersheds, Natural Hazards and Earth System Sciences, 14, 1641-1661, doi:10.5194/nhess-14-1641-2014, 2014.
55. Brauer, C. C., P. J. J. F. Torfs, A. J. Teuling, and R. Uijlenhoet, The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrology and Earth System Sciences , 18, 4007-4028, 10.5194/hess-18-4007-2014, 2014.
56. Kloss, S., N. Schütze, and U. Schmidhalter, Evaluation of very high soil-water tension threshold values in sensor-based deficit irrigation systems, Journal of Irrigation and Drainage Engineering, 140 (9), 10.1061/(ASCE)IR.1943-4774.0000722, 2014.
57. Brauer, C. C., A. J. Teuling, P. J. J. F. Torfs, and R. Uijlenhoet, The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater, Geoscientific Model Development, 7, 2313-2332, doi:10.5194/gmd-7-2313-2014, 2014.
58. #Hörmann, G., N. Fohrer, and W. Kluge, Modelle zum Wasserhaushalt, Handbuch der Umweltwissenschaften, 2014.
59. Zeff, H. B., J. R. Kasprzyk, J. D. Herman, P. M. Reed, and G. W. Characklis, Navigating financial and supply reliability tradeoffs in regional drought management portfolios, Water Resources Research, 50(6), 4906–4923, 2014.
60. Minville, M., D. Cartier, C. Guay, L.-A. Leclaire, C. Audet, S. Le Digabel, and J. Merleau, Improving process representation in conceptual hydrological model calibration using climate simulations, Water Resources Research, 50(6), 5044–5073, 2014.
61. Gao, W., F. Zhou, Y.-J. Dong, H.-C. Guo, J.-T. Peng, P. Xu, and , L. Zhao, PEST-based multi-objective automatic calibration of hydrologic parameters for HSPF model, Journal of Natural Resources, 29(5), 855-867, 2014.
62. #Houle, E., and J. Kasprzyk, Investigating parameter sensitivity for management in snow-driven watersheds, Proceedings of 7th International Congress on Environmental Modelling and Software, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (eds.), San Diego, CA, USA, 2014.
63. #Kasprzyk, J., J. Kollat, and C. Danilo, Balancing conflicting management objectives using interactive, three-dimensional visual analytics, Proceedings of 7th International Congress on Environmental Modelling and Software, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (eds.), San Diego, CA, USA, 2014.
64. Reynoso-Meza, G., J. Sanchis, X. Blasco, and S. García-Nieto, Physical programming for preference driven evolutionary multi-objective optimisation, Applied Soft Computing, 24, 341-362, 2014
65. Zhang, Y. Y., Q. X. Shao, A. Z. Ye and H. T. Xing, An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application, Hydrol. Earth Syst. Sci. Discuss., 11, 9219-9279, 10.5194/hessd-11-9219-2014, 2014.
66. Mayr, E., M. Juen, C. Mayer, R. Usubaliev and W. Hagg, Modeling runoff from the Inylchek glaciers and filling of ice‐dammed Lake Merzbacher, Central Tian Shan, Geografiska Annaler: Series A, Physical Geography, 96(4), 609–625, 10.1111/geoa.12061, 2014.
67. Matos, J. P., M. M. Portela, and D. Juízo, Uma forma alternativa de enfrentar a escassez de dados na bacia do rio Zambeze com vista à calibração de modelos hidrológicos (An alternative approach to face the scarcity of data in the Zambezi River basin aiming at calibrating hydrological models), Revista Recursos Hídricos, 35(1), 37-52, 2014.
68. Asadzadeh, M., B. Tolson, and D. H. Burn, A new selection metric for multiobjective hydrologic model calibration, Water Resources Research, 50(9), 7082–7099, doi:10.1002/2013WR014970, 2014.
69. Haghnegahdar, A., B. A. Tolson, B. Davison, F. R. Seglenieks, E. Klyszejko, E. D. Soulis, V. Fortin, and L. S. Matott, Calibrating environment Canada's MESH modelling system over the Great Lakes Basin, Atmosphere-Ocean, 52(4), 281-293, 2014.
70. Hrachowitz, M., O. Fovet, L. Ruiz, T. Euser, S. Gharari, R. Nijzink, J. Freer, H.H.G. Savenije, and C. Gascuel-Odoux, Process consistency in models: The importance of system signatures, expert knowledge, and process complexity, Water Resources Research, 50(9), 7445–7469, doi: 10.1002/2014WR015484, 2014.
71. Doppler, T., M. Honti, U. Zihlmann, P. Weisskopf, and C. Stamm, Validating a spatially distributed hydrological model with soil morphology data, Hydrology and Earth System Sciences, 18, 3481-3498, doi:10.5194/hess-18-3481-2014, 2014.
72. Newman, J. P., G. C. Dandy, and H. R. Maier, Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization, Water Resources Research, 50(10), 7915–7938, doi:10.1002/2013WR015233, 2014.
73. Werisch, S., J. Grundmann, H. Al-Dhuhli, E. Algharibi, and F. Lennartz, Multiobjective parameter estimation of hydraulic properties for a sandy soil in Oman, Environmental Earth Sciences, 72(12), 4935-4956, 2014.
74. Piscopo, A. N., J. R. Kasprzyk, and R. M. Neupauer, An iterative approach to multi-objective engineering design: Optimization of engineered injection and extraction for enhanced groundwater remediation, Environmental Modelling & Software, 69, 253-261, 2015.
75. Andréassian, V., F. Bourgin, L. Oudin, T. Mathevet, C. Perrin, J. Lerat, L. Coron, and L. Berthet, Seeking genericity in the selection of parameter sets: Impact on hydrological model efficiency, Water Resources Research, 50(10), 8356–8366, 2014.
76. Ficklin, D. L., and B. L. Barnhart, SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds, Journal of Hydrology, 519(B), 2081–2090, 2014.
77. Yang, J., F. Castelli and Y. Chen, Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC, Hydrology and Earth System Sciences, 18, 4101-4112, 10.5194/hess-18-4101-2014, 2014.
78. #Matos, J.P., Hydraulic-hydrologic model for the Zambezi River using satellite data and artificial intelligence techniques, Communications du Laboratoire de Constructions Hydrauliques ISSN 1661-1179, Ecole Polytechnique Fédérale de Lausanne, 2014.
79. Dumedah, G., Toward essential union between evolutionary strategy and data assimilation for model diagnostics: An application for reducing the search space of optimization problems using hydrologic genome map, Environmental Modelling & Software, 69, 342-352, 2015.
80. Gao, W., H. C. Guo, and Y. Liu, Impact of calibration objective on hydrological model performance in ungauged watersheds, Journal of Hydrologic Engineering, 20(8), 04014086, doi:10.1061/(ASCE)HE.1943-5584.0001116, 2015.
81. Koch, J., K. Høgh Jensen, and S. Stisen, Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF analysis benchmarked by the human perception and evaluated against a modeling case study, Water Resources Research, 51(2), 1225–1246, doi:10.1002/2014WR016607, 2015.
82. #Perrin , C ., M.-H . Ramos , V. Andréassian , P. Nicolle , L. Crochemore , and R. Pushpalatha, Improved rainfall-runoff modelling tools for low-flow forecasting: Application to French catchments, Drought: Research and Science-Policy Interfacing, J. Andreu Alvarez, A. Solera, J. Paredes-Arquiola, D. Haro-Monteagudo, and H. van Lanen (editors), Chapter 38, 259–265, CRC Press, doi:10.1201/b18077-45, 2015.
83. Seong, C., Y. Her, and B. L. Benham, Automatic calibration tool for hydrologic simulation program-FORTRAN using a shuffled complex evolution algorithm, Water, 7, 503-527, doi:10.3390/w7020503, 2015.
84. Wi, S., Y.C.E. Yang, S. Steinschneider, A. Khalil, and C.M. Brown, Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrology and Earth System Sciences, 19, 857-876, doi:10.5194/hess-19-857-2015, 2015.
85. Chang, C.-H., Development of ocean color algorithms for estimating chlorophyll-a concentrations and inherent optical properties using gene expression programming (GEP), Optics Express, 23(5), 5417-5437, doi:10.1364/OE.23.005417, 2015.
86. Hauduc, H., M.B. Neumann, D. Muschalla, V. Gamerith, S. Gillot, and P.A. Vanrolleghem, Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment, Environmental Modelling and Software, 68, 196-204, doi:10.1016/j.envsoft.2015.02.004, 2015.
87. Peel, M. C., R. Srikanthan, T. A. McMahon, and D. J. Karoly, Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data, Hydrology and Earth System Sciences, 19, 1615-1639, doi:10.5194/hess-19-1615-2015, 2015.
88. Silvestro, F., S. Gabellani, R. Rudari, F. Delogu, P. Laiolo, P., and G. Boni, Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote sensing data, Hydrology and Earth System Sciences, 19, 1727-1751, doi:10.5194/hess-19-1727-2015, 2015.
89. Thirel, G., V. Andréassian, and C. Perrin, On the need to test hydrological models under changing conditions, Hydrological Sciences Journal, 60(7-8), 1165-1173, doi:10.1080/02626667.2015.1050027, 2015.
90. #Simmons, J. A., L. A. Marshall, I. L. Turner, K. D. Splinter, R. J. Cox, M. D. Harley, D. J. Hanslow, and M. A. Kinsela, A more rigorous approach to calibrating and assessing the uncertainty of coastal numerical models, Australasian Coasts & Ports Conference 2015, Auckland, New Zealand, 2015.
91. Hublart, P., D. Ruelland, A. Dezetter, and H. Jourde, Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes, Hydrology and Earth System Sciences, 19, 2295–2314, doi:10.5194/hess-19-2295-2015, 2015.
92. Chiew, F. H. S., and J. Vaze, Hydrologic nonstationarity and extrapolating models to predict the future: overview of session and proceeding, Proc. IAHS, 371, 17–21, doi:10.5194/piahs-371-17-2015, 2015.
93. Lazzaro, G., and G. Botter, Run-of-river power plants in Alpine regions: Whither optimal capacity?, Water Resources Research, 51(7), 5658–5676, doi:10.1002/2014WR016642, 2015.
94. Bardsley, W.E., V. Vetrova, and S. Liu, Toward creating simpler hydrological models: A LASSO subset selection approach, Environmental Modelling and Software, 72, 33-43, doi:10.1016/j.envsoft.2015.06.008, 2015.
95. Zhang, Y., G. Fu, B. Sun, S. Zhang, and B. Men, Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China, Journal of Geophysical Research: Atmospheres, 120(15), 7429–7453, doi:10.1002/2015JD023294, 2015.
96. Piccolroaz, S., B. Majone, F. Palmieri, G. Cassiani, and A. Bellin, On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling, Water Resources Research, 51(9), 7270–7288, doi:10.1002/2015WR016994, 2015.
97. Gelleszun, M., P. Kreye and G. Meon, Lexicographic calibration strategy for efficient parameter estimation in highly resolved rainfall-runoff models, Hydrologie Und Wasserbewirtschaftung, 59 (3), 84-95, 10.5675/HyWa_2015,3_1, 2015.
98. Doncieux, S., J. Liénard, B. Girard, M. Hamdaoui and J. Chaskalovic, Multi-objective analysis of computational models, arXiv:1507.06877, 2015.
99. Serpa, D., J. P. Nunes, J. Santos, E. Sampaio, R. Jacinto, S. Veiga, J. C. Lima, M. Moreira, J. Corte-Real, J. J. Keizer, and N. Abrantes, Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments, Science of the Total Environment, 538, 64-77, doi:10.1016/j.scitotenv.2015.08.033, 2015.
100. #Sun, N.-Z., and A. Sun, Multiobjective inversion and regularization, Model Calibration and Parameter Estimation for Environmental and Water Resource Systems, 69-105, 2015.
101. #Cho, H.-J., M. C. Hwang, and C. C. Hsu, A calibration framework of a mixed-traffic signal optimization model by multi-objective evolutionary approach, MSV'15 - The 12th International Conference on Modeling, Simulation and Visualization Methods, 44-47, Las Vegas, 2015.
102. Inzoli, S., and M. Giudici, A comparison between single- and multi-objective optimization to fit spectral induced polarization data from laboratory measurements on alluvial sediments, Journal of Applied Geophysics, 122, 149-158, doi:10.1016/j.jappgeo.2015.09.017, 2015.
103. Sikorska, A.E., D. Del Giudice, K. Banasik, and J. Rieckermann, The value of streamflow data in improving TSS predictions - Bayesian multi-objective calibration, Journal of Hydrology, 530, 241–254, doi:10.1016/j.jhydrol.2015.09.051, 2015.
104. Zhang, Y. Y., Q. X. Shao, A. Z. Ye, H. T. Xing, and J. Xia, Integrated water system simulation by considering hydrological and biogeochemical processes: model development, parameter sensitivity and autocalibration, Hydrology and Earth System Sciences, 20, 529-553, doi:10.5194/hess-20-529-2016, 2016.
105. #Ward, A. D., S. W. Trimble, S. R. Burckhard, and J. G. Lyon, Environmental Hydrology, 3rd edition, CRC Press, 2016.
106. Hughes, J. D., S. S. H. Kim, D. Dutta, and J. Vaze, Optimisation of a multiple gauge, regulated river–system model. A system approach, Hydrological Processes, 30(12), 1955-1967, doi:10.1002/hyp.10752, 2016.
107. Fernández-Rodríguez, S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Quercus long-term pollen season trends in the southwest of the Iberian Peninsula, Process Safety and Environmental Protection, 101, 152–159, doi:10.1016/j.psep.2015.11.008, 2016.
108. Chang, C.-H., J. F. Harrison, and Y.‐C. Huang, Modeling typhoon‐induced alterations on river sediment transport and turbidity based on dynamic landslide inventories: Gaoping river basin, Taiwan, Water, 7, 6910–6930, doi:10.3390/w7126666, 2015.
109. Houska, T., P. Kraft, A. Chamorro-Chavez, and L. Breuer, SPOTting model parameters using a ready-made Python package, PLoS ONE 10(12), e0145180, doi:10.1371/journal.pone.0145180, 2015.
110. Pouget, D. P., A. Vera, M. Villacís, T. Condom, M. Escobar, P. Le Goulven, and R. Calvez, Glacio-hydrological modelling and water resources management in the Ecuadorian Andes: the example of Quito, Hydrological Sciences Journal, doi:10.1080/02626667.2015.1131988, 2015.
111. Guo, S., C. Xu, H. Chen, and D. Liu, Review and assessment of interaction between watershed hydrology and society system, Journal of Water Resources Research, 5(1), 1-15, doi:10.12677/jwrr.2016.51001, 2016.
112. Oni, S. K., M. N. Futter, J. L. J. Ledesma, C. Teutschbein, J. Buttle, and H. Laudon, Using dry and wet hydroclimatic extremes to guide future hydrologic predictions, Hydrology and Earth System Sciences, 20, 2811-2825, doi:10.5194/hess-2016-7, 2016.
113. Le Bourgeois, O., C. Bouvier, P. Brunet, and P.-A. Ayral, Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock, Journal of Hydrology, 541, 116-126, doi:10.1016/j.jhydrol.2016.01.067, 2016.
114. Silva-Palacios, I., S. Fernández-Rodríguez, P. Durán-Barroso, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula, International Journal of Biometeorology, 60(2), 297-306, doi:10.1007/s00484-015-1026-6, 2016.
115. Fowler, K. J. A., M. C. Peel, A. W. Western, L. Zhang, and T. J. Peterson, Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models, Water Resources Research, 52(3), 1820–1846, doi:10.1002/2015WR018068, 2016.
116. Chen, J., R. Arsenault, and F. P. Brissette, An experimental approach to reduce the parametric dimensionality for rainfall–runoff models, Hydrology Research, 47(2), doi:10.2166/nh.2016.145, 2016.
117. Dariane , A. B., and M. M. Javadianzadeh, Towards an efficient rainfall–runoff model through partitioning scheme, Water, 8, 63; doi:10.3390/w8020063, 2016.
118. Fernández-Rodríguez , S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Regional forecast model for the Olea pollen season in Extremadura (SW Spain), International Journal of Biometeorology, 60(10), 1509-1517, doi:10.1007/s00484-016-1141-z, 2016.
119. #Tian, F., Y. Sun, H. Hu, and H. Li, Searching for an optimized single-objective function matching multiple objectives with automatic calibration of hydrological models, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-88, 2016.
120. Smith, A., C. Welch, and T. Stadnyk, Assessment of a lumped coupled flow-isotope model in data scarce Boreal catchments, Hydrological Processes, doi:10.1002/hyp.10835, 2016.
121. Rogelis, M. C., M. Werner, N. Obregón, and N. Wright, Hydrological model assessment for flood early warning in a tropical high mountain basin, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-30, 2016.
122. Senapati, N., P.-E. Jansson, P. Smith, and A. Chabbi, Modelling heat, water and carbon fluxes in mown grassland under multi-objective and multi-criteria constraints, Environmental Modelling & Software, 80, 201-224, doi:10.1016/j.envsoft.2016.02.025, 2016.
123. Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani, Hydrologic modeling in dynamic catchments: A data assimilation approach, Water Resources Research, 52(5), 3350–3372, doi:10.1002/2015WR017192, 2016.
124. Seibert, S. P., U. Ehret, and E. Zehe, Disentangling timing and amplitude errors in streamflow simulations, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-145, 2016.
125. #Echevarría , Y., L. Sánchez, and C. Blanco, Assessment of multi-objective optimization algorithms for parametric identification of a Li-Ion Battery model, Hybrid Artificial Intelligent Systems, Vol. 9648, Lecture Notes in Computer Science, 250-260, doi: 10.1007/978-3-319-32034-2_21, 2016.
126. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016.
127. Zhang, Y., Q. Shao, and J. A. Taylor, A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model, Journal of Hydrology, 538, 802-816, doi:10.1016/j.jhydrol.2016.05.001, 2016.
128. Zhang, Y., Q. Shao, S. Zhang, X. Zhai, and D. She, Multi-metric calibration of hydrological model to capture overall flow regimes, Journal of Hydrology, 539, 525–538, doi:10.1016/j.jhydrol.2016.05.053, 2016.
129. Hitsov, I., L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, and I. Nopens, Calibration and analysis of a direct contact membrane distillation model using Monte Carlo filtering, Journal of Membrane Science, 515, 63–78, doi:10.1016/j.memsci.2016.05.041, 2016.
130. Fernández-Rodríguez, S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Forecast model of allergenic hazard using trends of Poaceae airborne pollen over an urban area in SW Iberian Peninsula (Europe), Natural Hazards, 84(1), 121-137, doi:10.1007/s11069-016-2411-0, 2016.
131. Yen, H., M. J. White, J. G. Arnold, S. C. Keitzer, M.-V. V. Johnson, J. D. Atwood, P. Daggupati, M. E. Herbert, S. P. Sowa, S. A. Ludsin, D. M. Robertson, R. Srinivasan, and C. A. Rewa, Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios, Science of the Total Environment, 569-570, 1265–1281, doi:10.1016/j.scitotenv.2016.06.202, 2016.
132. Yu, X., C. Duffy, Y. Zhang, G. Bhatt, and Y. Shi, Virtual experiments guide calibration strategies for a real-world watershed application of coupled surface-subsurface modeling, Journal of Hydrologic Engineering, 04016043, doi:10.1061/(ASCE)HE.1943-5584.0001431, 2016.
133. Davison, B., A. Pietroniro, V. Fortin, R. Leconte, M. Mamo, and M. K. Yau, What is missing from the prescription of hydrology for land surface schemes?, Journal of Hydrometeorology, 17(7), 2013-2039, doi:10.1175/JHM-D-15-0172.1, 2016.
134. Mendez, M., and L. Calvo-Valverde, Development of the HBV-TEC hydrological model, Procedia Engineering, 154, 1116-1123, doi:10.1016/j.proeng.2016.07.521, 2016.
135. Huo, J., L. Liu, and Y. Zhang, Comparative research of optimization algorithms for parameters calibration of watershed hydrological model, Journal of Computational Methods in Sciences and Engineering, 16(3), 653-669, doi:10.3233/JCM-160647, 2016.
136. Hernández, F. and X., Liang, X., Hybridizing sequential and variational data assimilation for robust high-resolution hydrologic forecasting, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-454, 2016.
137. Pagel, H., C. Poll, J. Ingwersen, E. Kandeler, and T. Streck, Modeling coupled pesticide degradation and organic matter turnover: From gene abundance to process rates, Soil Biology and Biochemistry, 103, 349-364, doi:10.1016/j.soilbio.2016.09.014, 2016.
138. Bisselink, B., M. Zambrano-Bigiarini, P. Burek, and A. de Roo, Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions, Journal of Hydrology: Regional Studies, 8, 112-129, doi:10.1016/j.ejrh.2016.09.003, 2016.
139. Vernier, F., O. Leccia-Phelpin, J.-M. Lescot, S. Minette, A. Miralles, D. Barberis, C. Scordia, V. Kuentz-Simonet, and J.-P. Tonneau, Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France), Environmental Science and Pollution Research, doi:10.1007/s11356-016-7657-2, 2016.
140. Piotrowski, A. P., M. J. Napiorkowski, J. J. Napiorkowski, M. Osuch, and Z. W. Kundzewicz, Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models?, Hydrological Sciences Journal, doi:10.1080/02626667.2016.1234712, 2016.
141. #De Paola, F., M. Giugni, and F. Pugliese, A harmony-based calibration tool for urban drainage systems, Proceedings of the Institution of Civil Engineers - Water Management, doi:10.1680/jwama.16.00057, 2016.
142. #Meza, G. R., X. B. Ferragud, J. S. Saez, and J. M. H. Durá, Background on multiobjective optimization for controller tuning, Controller Tuning with Evolutionary Multiobjective Optimization - A Holistic Multiobjective Optimization Design Procedure, Intelligent Systems, Control and Automation: Science and Engineering, Vol. 85, 23-58, doi:10.1007/978-3-319-41301-3_2, 2017.
143. Seiller, G., R. Roy, and F. Anctil, Influence of three common calibration metrics on the diagnosis of climate change impacts on water resources, Journal of Hydrology, doi:10.1016/j.jhydrol.2017.02.004, 2017.

Tagged under: Hydrological models, Optimization