D. Koutsoyiannis, and P. Dimitriadis, Towards generic simulation for demanding stochastic processes, *Sci*, 3, 34, doi:10.3390/sci3030034, 2021.

[doc_id=2137]

[English]

We outline and test a new methodology for genuine simulation of stochastic processes with any dependence structure and any marginal distribution. We reproduce time dependence with a generalized, time symmetric or asymmetric, moving-average scheme. This implements linear filtering of non-Gaussian white noise, with the weights of the filter determined by analytical equations, in terms of the autocovariance of the process. We approximate the marginal distribu-tion of the process, irrespective of its type, using a number of its cumulants, which in turn deter-mine the cumulants of white noise, in a manner that can readily support the generation of random numbers from that approximation, so that it be applicable for stochastic simulation. The simulation method is genuine as it uses the process of interest directly, without any transformation (e.g., normalization). We illustrate the method in a number of synthetic and real-world applications, with either persistence or antipersistence, and with non-Gaussian marginal distributions that are bounded, thus making the problem more demanding. These include distributions bounded from both sides, such as uniform, and bounded from below, such as exponential and Pareto, possibly having a discontinuity at the origin (intermittence). All examples studied show the satisfactory performance of the method.

**
Full text
**
(3002 KB)

**Our works referenced by this work:**

1. | D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000. |

2. | D. Koutsoyiannis, Coupling stochastic models of different time scales, Water Resources Research, 37 (2), 379–391, doi:10.1029/2000WR900200, 2001. |

3. | D. Koutsoyiannis, Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48 (1), 3–24, doi:10.1623/hysj.48.1.3.43481, 2003. |

4. | D. Koutsoyiannis, C. Onof, and H. S. Wheater, Multivariate rainfall disaggregation at a fine timescale, Water Resources Research, 39 (7), 1173, doi:10.1029/2002WR001600, 2003. |

5. | D. Koutsoyiannis, An entropic-stochastic representation of rainfall intermittency: The origin of clustering and persistence, Water Resources Research, 42 (1), W01401, doi:10.1029/2005WR004175, 2006. |

6. | D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007. |

7. | D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010. |

8. | P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015. |

9. | D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016. |

10. | D. Koutsoyiannis, Entropy production in stochastics, Entropy, 19 (11), 581, doi:10.3390/e19110581, 2017. |

11. | P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, 556, 980–992, doi:10.1016/j.jhydrol.2016.07.015, 2018. |

12. | P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018. |

13. | I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018. |

14. | D. Koutsoyiannis, Knowable moments for high-order stochastic characterization and modelling of hydrological processes, Hydrological Sciences Journal, 64 (1), 19–33, doi:10.1080/02626667.2018.1556794, 2019. |

15. | D. Koutsoyiannis, Time’s arrow in stochastic characterization and simulation of atmospheric and hydrological processes, Hydrological Sciences Journal, 64 (9), 1013–1037, doi:10.1080/02626667.2019.1600700, 2019. |

16. | F. Lombardo, F. Napolitano, F. Russo, and D. Koutsoyiannis, On the exact distribution of correlated extremes in hydrology, Water Resources Research, 55 (12), 10405–10423, doi:10.1029/2019WR025547, 2019. |

17. | D. Koutsoyiannis, Simple stochastic simulation of time irreversible and reversible processes, Hydrological Sciences Journal, 65 (4), 536–551, doi:10.1080/02626667.2019.1705302, 2020. |

18. | P. Dimitriadis, D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021. |

19. | S. Vavoulogiannis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Multiscale temporal irreversibility of streamflow and its stochastic modelling, Hydrology, 8 (2), 63, doi:10.3390/hydrology8020063, 2021. |

20. | D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Edition 2, ISBN: 978-618-85370-0-2, 346 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2022. |

**Our works that reference this work:**

1. | T. Iliopoulou, N. Malamos, and D. Koutsoyiannis, Regional ombrian curves: Design rainfall estimation for a spatially diverse rainfall regime, Hydrology, 9 (5), 67, doi:10.3390/hydrology9050067, 2022. |

**Tagged under:**
Course bibliography: Stochastic methods,
Most recent works,
Stochastics