An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002.



The evolutionary annealing-simplex algorithm is a probabilistic heuristic global optimisation technique that joins ideas from different methodological approaches, enhancing them with some original elements. The main concept is based on a controlled random search scheme, where a generalised downhill simplex methodology is coupled with a simulated annealing procedure. The algorithm combines the robustness of simulated annealing in rugged problems, with the efficiency of hill-climbing methods in simple search spaces. The following-up procedure is based on a simplex-searching scheme. The simplex is reformulated at each generation going either downhill or uphill, according to a probabilistic criterion. In the first case, it moves towards the direction of a candidate local minimum via a generalised Nelder-Mead strategy. In the second case, it expands itself along the uphill direction, in order to escape from the current local minimum. In all possible movements, a combination of deterministic as well as stochastic transition rules is applied. The evolutionary annealing-simplex algorithm was first examined in a variety of typical benchmark functions and then it was applied in two global optimisation problems taken from water resources engineering, the calibration of a hydrological model and the optimisation of a multiple reservoir systems' operation. The algorithm has been proved very reliable in locating the global optimum, requiring reasonable computational effort.

PDF Full text:

PDF Additional material:

See also:

Related works:


Web page of optimization algorithms:

Our works that reference this work:

1. D. Koutsoyiannis, and A. Efstratiadis, Experience from the development of decision support systems for the management of large-scale hydrosystems of Greece, Proceedings of the Workshop "Water Resources Studies in Cyprus", edited by E. Sidiropoulos and I. Iakovidis, Nikosia, 159–180, Water Development Department of Cyprus, Aristotle University of Thessaloniki, Thessaloniki, 2003.
2. E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004.
3. A. Efstratiadis, and D. Koutsoyiannis, The multiobjective evolutionary annealing-simplex method and its application in calibrating hydrological models, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04593, doi:10.13140/RG.2.2.32963.81446, European Geosciences Union, 2005.
4. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.
5. A. Efstratiadis, and D. Koutsoyiannis, Fitting hydrological models on multiple responses using the multiobjective evolutionary annealing simplex approach, Practical hydroinformatics: Computational intelligence and technological developments in water applications, edited by R.J. Abrahart, L. M. See, and D. P. Solomatine, 259–273, doi:10.1007/978-3-540-79881-1_19, Springer, 2008.
6. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
7. A. Efstratiadis, Simulation and optimization of the management of the water resource system of Athens, 28 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, January 2012.
8. A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013.
9. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, A decision support system for the management of hydropower systems – Application to the Acheloos-Thessaly hydrosystem, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.1952.0244, Hellenic Commission on Large Dams, 2013.
10. A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling of temporally-varying catchments: Facets of change and the value of information, Hydrological Sciences Journal, 60 (7-8), 1438–1461, doi:10.1080/02626667.2014.982123, 2015.
11. I. Tsoukalas, P. Dimas, and C. Makropoulos, Hydrosystem optimization on a budget: Investigating the potential of surrogate based optimization techniques, 14th International Conference on Environmental Science and Technology (CEST2015), Global Network on Environmental Science and Technology, University of the Aegean, 2015.
12. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
13. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016.
14. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.
15. P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, 556, 980–992, doi:10.1016/j.jhydrol.2016.07.015, 2018.
16. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, Water, 10 (2), 194, doi:10.3390/w10020194, 2018.
17. S. Tsattalios, I. Tsoukalas, P. Dimas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Advancing surrogate-based optimization of time-expensive environmental problems through adaptive multi-model search, Environmental Modelling and Software, 162, 105639, doi:10.1016/j.envsoft.2023.105639, 2023.
18. A. Zisos, G.-K. Sakki, and A. Efstratiadis, Mixing renewable energy with pumped hydropower storage: Design optimization under uncertainty and other challenges, Sustainability, 15 (18), 13313, doi:10.3390/su151813313, 2023.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. #El Mouatasim, A., and R. Ellaia, RPRGM approach for optimize the cost of electric energy of drinking water complex, JANO8 2005: 8emes Journees d’Analyse Numerique et Optimisation, 327-331, Rabat-Morocco, 2005.
2. Machado, E. S., M., da Conceição Cunha, and M. Porto, Otimização de sistemas regionais de sistemas de tratamento de efluentes e seu impacto na qualidade da água: uma revisão, Revista de Gestao de Agua da America Latina, 3(1), 57-71, 2006.
3. #Burton, A., H. Fowler, C. Kilsby, and M. Marani, Investigation of intensity and spatial representations of rainfall within stochastic rainfall model, AquaTerra: Integrated modelling of the river-sediment-soil-groundwater system; advanced tools for the management of catchment areas and river basins in the context of global change, Deliverable H1.8, 57 pp., 2007.
4. Bruen, M., Systems analysis – a new paradigm and decision support tools for the water framework directive, Hydrology and Earth System Sciences, 12(3), 739-749, 2008.
5. #Martins, J. C., and L. A. Sousa, Bioelectronic Vision: Retina Models, Evaluation Metrics and System Design, Series on Bioengineering and Biomedical Engineering, Vol. 3, 272 p., Singapore, 2009.
6. Kourakos, G., and A. Mantoglou, Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models, Advances in Water Resources, 32(4), 507-521, 2009.
7. Martins, J., P. Tomás, and L. Sousa, Neural code metrics: Analysis and application to the assessment of neural models, Neurocomputing, 72(10-12), 2337-2350, 2009.
8. #Dakhlaoui, H., Z. Bargaoui and A. Bàrdossy, Comparison of three methods using the κ-nearest neighbours approach to improve the SCE-UA algorithm for calibration of the HBV rainfall-runoff model, IAHS Publication 331, 139-153, 2009.
9. Nicklow, J., P. Reed, D. Savic, T. Dessalegne, L. Harrell, A. Chan-Hilton, M. Karamouz, B. Minsker, A. Ostfeld, A. Singh, and E. Zechman, State of the art for genetic algorithms and beyond in water resources planning and management, Journal of Water Resources Planning and Management, 136(4), 412-432, 2010.
10. Tudorache, T., and V. Bostan, Wind generators test bench. Optimal design of PI controller, Advances in Electrical and Computer Engineering, 11(3), 65-70, 2011.
11. #SIRRIMED (Sustainable use of irrigation water in the Mediterranean Region), D4.2 and D5.2 Report on Models to be Implemented in the District Information Systems (DIS) and Watershed Information Systems (WIS), 95 pp., Universidad Politécnica de Cartagena, 2011.
12. Dong, Y., S. Mihalas, A. Russell, R. Etienne-Cummings, and E. Niebur, Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains, Neural Computation, 23(11), 2833-2867, 2011.
13. Dakhlaoui, H., Z. Bargaoui, and A. Bàrdossy, Toward a more efficient calibration schema for HBV rainfall-runoff model, Journal of Hydrology, 444-445, 161-179, 2012.
14. Musharavati, F., A neural network approach for integrated water resource management, International Journal of Biological, Ecological and Environmental Sciences, 1(3), 64–71, 2012.
15. Dong, Y., S. Mihalas, S. S. Kim, T. Yoshioka, S. J. Bensmaia and E. Niebur, A simple model of mechanotransduction in primate glabrous skin, Journal of Neurophysiology, 109 (5), 1350-1359, 2013.
16. Kourakos, G., and A. Mantoglou, Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management, Journal of Hydrology, 479, 13-23, 2013.
17. #Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using radial basis function metamodels, Proceedings of 9th World Congress EWRA “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015.
18. Villani, V., D. Di Serafino, G., Rianna, and P. Mercogliano, Stochastic models for the disaggregation of precipitation time series on sub-daily scale: identification of parameters by global optimization, CMCC Research Paper, RP0256, 2015.
19. Christelis, V., and A. Mantoglou, Coastal aquifer management based on the joint use of density-dependent and sharp interface models, Water Resources Management, 30(2), 861-876, doi:10.1007/s11269-015-1195-4, 2016.
20. Tigkas, D., V. Christelis, and G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model, Environmental Processes, doi:10.1007/s40710-016-0147-1, 2016.
21. Dounia, M., D. Yassine, and H. Yahia, Calibrating conceptual rainfall runoff models using artificial intelligence, Journal of Environmental Science and Technology, 9, 257-267, doi:10.3923/jest.2016.257.267, 2016.
22. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016.
23. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions, Water Resources Management, 30(15), 5845–5859, doi:10.1007/s11269-016-1337-3, 2016.
24. #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016.
25. Ciervo, F., G. Rianna, P. Mercogliano, and M. N. Papa, Effects of climate change on shallow landslides in a small coastal catchment in southern Italy, Landslides, 14(3), 1043–1055, doi:10.1007/s10346-016-0743-1, 2017.
26. Charizopoulos, N., A. Psilovikos, and E. Zagana, A lumped conceptual approach for modeling hydrological processes: the case of Scopia catchment area, Central Greece, Environmental Earth Sciences, 76:18, doi:10.1007/s12665-017-6967-0, 2017.
27. Christelis, V., and A. Mantoglou, Physics-based and data-driven surrogate models for pumping optimization of coastal aquifers, European Water, 57, 481-488, 2017
28. Kopsiaftis, G., V. Christelis, and A. Mantoglou, Pumping optimization in coastal aquifers: Comparison of sharp interface and density dependent models, European Water, 57, 443-449, 2017.
29. Christelis, V., R. G. Regis, and A. Mantoglou, Surrogate-based pumping optimization of coastal aquifers under limited computational budgets, Journal of Hydroinformatics, 20(1), 164-176, doi:10.2166/hydro.2017.063, 2018.
30. Rozos, E., An assessment of the operational freeware management tools for multi-reservoir systems, Water Science and Technology: Water Supply, ws2018169, doi:10.2166/ws.2018.169, 2018.
31. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using seawater intrusion models of variable-fidelity and evolutionary algorithms, Water Resources Management, 33(2), 555-558, doi:10.1007/s11269-018-2116-0, 2019.
32. Kopsiaftis, G., V. Christelis, and A. Mantoglou, Comparison of sharp interface to variable density models in pumping optimisation of coastal aquifers, Water Resources Management, 33(4), 1397-409, doi:10.1007/s11269-019-2194-7, 2019.
33. Christelis, V., G. Kopsiaftis, and A. Mantoglou, Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers, Hydrological Sciences Journal, 64(3), 336-349, doi:10.1080/02626667.2019.1584400, 2019.
34. Hayek, A., N. Tabaja, Z. Khraibani, S. A. Andaloussi, J. Toufaily, M. Mrad, E. Garnie-Zarli, T.r Hamieh, Modeling of runoff as a function of temperature and precipitation: Application to the Litani river in Lebanon, Journal of Earth Science and Climatic Change, 10(9), 526, 2019.
35. Onof, C., and L.-P. Wang, Modelling rainfall with a Bartlett–Lewis process: New developments, Hydrology and Earth System Sciences , 24, 2791-2815, doi: 10.5194/hess-24-2791-2020, 2020.
36. Stamou, A.-T., and P. Rutschmann, Optimization of water use based on the water-energy-food nexus concept: Application to the long-term development scenario of the Upper Blue Nile River, Water Utility Journal, 25, 1-13, 2020.
37. Bemmoussat, A., K. Korichi, D. Baahmed, N. Maref, O. Djoukbala, Z. Kalantari, and S. M. Bateni, Contribution of satellite-based precipitation in hydrological rainfall-runoff modeling: Case study of the Hammam Boughrara region in Algeria, Earth Systems and Environment, doi:10.1007/s41748-021-00256-z, 2021.
38. Hayder, A. M., and M. Al-Mukhtar, Modelling the IDF curves using the temporal stochastic disaggregation BLRP model for precipitation data in Najaf City, Arabian Journal of Geosciences, 14, 1957, doi:10.1007/s12517-021-08314-6, 2021.
39. Silva, T. F., C. L. Rodrigues, N. Added, M. A. Rizzutto, M. H. Tabacniks, T. Höschen, U. von Toussaint, and M. Mayer, Self-consistent ion beam analysis: An approach by multi-objective optimization, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 506, 32-40, doi:10.1016/j.nimb.2021.09.007, 2021.
40. Oruc, S., I. Yücel, and A. Yılmaz, Investigation of the effect of climate change on extreme precipitation: Capital Ankara case, Teknik Dergi, 33(2), doi:10.18400/tekderg.714980, 2022.
41. Zhou, H., S. Reeves, C.-Y. Chou, A. Brannen, and P. Panizzi, Online geometry calibration for retrofit computed tomography from a mouse rotation system and a small-animal imager, Medical Physics, 50(1), 192-208, doi:10.1002/mp.15953, 2023.
42. #Cherif, R., M. Bouteffeha, E. Gargouri-Ellouze, and S. Eslamian, Hydrologic models classification, calibration, and validation, S. Eslamian and F. Eslamian (editors), Handbook of Hydroinformatics – Volume II: Advanced Machine Learning Techniques, Chapter 10, 155-168, doi:10.1016/B978-0-12-821961-4.00023-3, 2023.
43. Kopsiaftis, G., M. Kaselimi, E. Protopapadakis, A. Voulodimos, A. Doulamis, N. Doulamis, and A. Mantoglou, Performance comparison of physics-based and machine learning assisted multi-fidelity methods for the management of coastal aquifer systems, Frontiers in Water, 5, 1195029, doi:10.3389/frwa.2023.1195029, 2023.
44. Christelis, V., G. Kopsiaftis. R. G. Regis, and A. Mantoglou, An adaptive multi-fidelity optimization framework based on co-Kriging surrogate models and stochastic sampling with application to coastal aquifer management, Advances in Water Resources, 180, 104537, doi:10.1016/j.advwatres.2023.104537, 2023.

Tagged under: Hydrosystems, Optimization, Students' works