Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems

D. Koutsoyiannis, and A. Economou, Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems, Water Resources Research, 39 (6), 1170, doi:10.1029/2003WR002148, 2003.



Most common methods used in optimal control of reservoir systems require a large number of control variables, which are typically the sequences of releases from all reservoirs and all time steps of the control period. In contrast, the less widespread parameterization-simulation-optimization (PSO) method is a low-dimensional method. It uses a handful of control variables, which are parameters of a simple rule that is valid through the entire control period and determines the releases from different reservoirs at each time step. The parameterization of the rule is linked to simulation of the reservoir system, which enables the calculation of a performance measure of the system for given parameter values, and nonlinear optimization, which enables determination of the optimal parameter values. To evaluate the PSO method and, particularly, to investigate whether the radical reduction of the number of control variables might lead to inferior solutions or not, we compare it to two alternative methods. These methods, namely the high-dimensional perfect foresight method and the simplified 'equivalent reservoir' method that merges the reservoir system into a single hypothetical reservoir, determine 'benchmark' performance measures for the comparison. The comparison is done both theoretically and by investigation of the results of the PSO against the benchmark methods in a large variety of test problems. 41 test problems for a hypothetical system of two reservoirs are constructed and solved for comparison. These refer to different objectives (maximization of reliable yield, minimization of cost, maximization of energy production), water uses (irrigation, water supply, energy production), characteristics of the reservoir system and hydrological scenarios. The investigation shows that the PSO method yields solutions that are not inferior to those of the benchmark methods and, simultaneously, it has several theoretical, computational and practical advantages.

PDF Full text (467 KB)

PDF Additional material:

See also: http://dx.doi.org/10.1029/2003WR002148

Our works referenced by this work:

1. D. Koutsoyiannis, A nonlinear disaggregation method with a reduced parameter set for simulation of hydrologic series, Water Resources Research, 28 (12), 3175–3191, doi:10.1029/92WR01299, 1992.
2. I. Nalbantis, and D. Koutsoyiannis, A parametric rule for planning and management of multiple reservoir systems, Water Resources Research, 33 (9), 2165–2177, doi:10.1029/97WR01034, 1997.
3. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000.
4. D. Koutsoyiannis, Coupling stochastic models of different time scales, Water Resources Research, 37 (2), 379–391, doi:10.1029/2000WR900200, 2001.
5. D. Koutsoyiannis, A. Efstratiadis, and G. Karavokiros, A decision support tool for the management of multi-reservoir systems, Journal of the American Water Resources Association, 38 (4), 945–958, doi:10.1111/j.1752-1688.2002.tb05536.x, 2002.

Our works that reference this work:

1. D. Koutsoyiannis, and A. Efstratiadis, Experience from the development of decision support systems for the management of large-scale hydrosystems of Greece, Proceedings of the Workshop "Water Resources Studies in Cyprus", edited by E. Sidiropoulos and I. Iakovidis, Nikosia, 159–180, Water Development Department of Cyprus, Aristotle University of Thessaloniki, Thessaloniki, 2003.
2. D. Koutsoyiannis, Older and modern considerations in the design and management of reservoirs, dams and hydropower plants (Solicited), 1st Hellenic Conference on Large Dams, Larisa, doi:10.13140/RG.2.1.3213.5922, Hellenic Commission on Large Dams, Technical Chamber of Greece, 2008.
3. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
4. A. Efstratiadis, Simulation and optimization of the management of the water resource system of Athens, 28 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, January 2012.
5. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, A decision support system for the management of hydropower systems – Application to the Acheloos-Thessaly hydrosystem, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.1952.0244, Hellenic Commission on Large Dams, 2013.
6. I. Tsoukalas, and C. Makropoulos, Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty, Environmental Modelling and Software, 69, 396–413, doi:10.1016/j.envsoft.2014.09.023, 2015.
7. I. Tsoukalas, and C. Makropoulos, A surrogate based optimization approach for the development of uncertainty-aware reservoir operational rules: the case of Nestos hydrosystem, Water Resources Management, 29 (13), 4719–4734, doi:10.1007/s11269-015-1086-8, 2015.
8. I. Tsoukalas, P. Dimas, and C. Makropoulos, Hydrosystem optimization on a budget: Investigating the potential of surrogate based optimization techniques, 14th International Conference on Environmental Science and Technology (CEST2015), Global Network on Environmental Science and Technology, University of the Aegean, 2015.
9. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
10. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.
11. I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure, Journal of Hydrology, 575, 354–380, doi:10.1016/j.jhydrol.2019.05.017, 2019.
12. G.-F. Sargentis, R. Ioannidis, G. Karakatsanis, S. Sigourou, N. D. Lagaros, and D. Koutsoyiannis, The development of the Athens water supply system and inferences for optimizing the scale of water infrastructures, Sustainability, 11 (9), 2657, doi:10.3390/su11092657, 2019.
13. I. Tsoukalas, P. Kossieris, and C. Makropoulos, Simulation of non-Gaussian correlated random variables, stochastic processes and random fields: Introducing the anySim R-Package for environmental applications and beyond, Water, 12 (6), 1645, doi:10.3390/w12061645, 2020.
14. H. Elsayed, S. Djordjević, D. Savic, I. Tsoukalas, and C. Makropoulos, The Nile water-food-energy nexus under uncertainty: Impacts of the Grand Ethiopian Renaissance Dam, Journal of Water Resources Planning and Management - ASCE, 146 (11), 04020085, doi:10.1061/(ASCE)WR.1943-5452.0001285, 2020.
15. N. Mamassis, A. Efstratiadis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Water and Energy, Handbook of Water Resources Management: Discourses, Concepts and Examples, edited by J.J. Bogardi, T. Tingsanchali, K.D.W. Nandalal, J. Gupta, L. Salamé, R.R.P. van Nooijen, A.G. Kolechkina, N. Kumar, and A. Bhaduri, Chapter 20, 617–655, doi:10.1007/978-3-030-60147-8_20, Springer Nature, Switzerland, 2021.
16. A. Efstratiadis, I. Tsoukalas, and D. Koutsoyiannis, Generalized storage-reliability-yield framework for hydroelectric reservoirs, Hydrological Sciences Journal, 66 (4), 580–599, doi:10.1080/02626667.2021.1886299, 2021.
17. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Edition 2, ISBN: 978-618-85370-0-2, 346 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2022.
18. A. Efstratiadis, and G.-K. Sakki, Revisiting the management of water-energy systems under the umbrella of resilience optimization, e-Proceedings of the 5th EWaS International Conference, Naples, 596–603, 2022.
19. A. Efstratiadis, and G.-K. Sakki, Revisiting the management of water–energy systems under the umbrella of resilience optimization, Environmental Sciences Proceedings, 21 (1), 72, doi:10.3390/environsciproc2022021072, 2022.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. #Bravo, J. M., W. Collischonn and J. V. Pilar, Otimização da operação de reservatórios: Estado da Arte, Anais do XVI Simpósio Brasileiro de Recursos Hídricos, João Pessoa, 2005.
2. Mousavi, S.J., K. Ponnambalam and F. Karray, Reservoir operation using a dynamic programming fuzzy rule-based approach, Water Resources Management, 19(5), 655-672, 2005.
3. #Bravo, J. M., W. Collischonn, J. V. Pilar & C. Depettris, Técnica de parametrización, simulación y optimización para definición de reglas de operación en repressa, Comunicaciones Científicas y Tecnológicas 2006, Universidad Nacional Del Nordeste, 2006.
4. Liu, P., S.L. Guo, L.H. Xiong, W. Li, and H.G. Zhang, Deriving reservoir refill operating rules by using the proposed DPNS model, Water Resources Management, 20(3), 337-357, 2006.
5. #Bravo, J.M., W. Collischonn, J.V. Pilar and C.E.M. Tucci, Otimização de regras de operação de reservatórios utilizando um algoritmo evolutivo, Anais do I Simpósio de Recursos Hídricos do Sul-Sudeste, ABRH, 2006.
6. #Bravo, J. M., W. Collischonn and J. V. Pilar, Optimización de la operación de una represa con múltiples usos utilizando un algoritmo evolutivo, Anales del IV Congreso argentino de presas y aprovechamientos hidroeléctricos, CADP, 2006.
7. #Bravo, J. M., W. Collischonn, C. E. M. Tucci and B. C. da Silva, Avaliação dos benefícios da previsão meteorológica na operação de reservatórios com usos múltiplos, Concurso I Prêmio INMET de Estudos sobre os Benefícios da Meteorologia para o Brasil, 2006.
8. #Bravo, J. M., W. Collischonn, J. V. Pilar, B. C. da Silva & C. E. M. Tucci, Evaluación de los beneficios de la previsión de caudal en la Operación de una represa, Anales del XXI congreso Nacional del Agua, 2007.
9. #Bravo, J.M., W. Collischonn, J.V. Pilar and C.E.M. Tucci, Influência da capacidade de regularização de reservatórios nos benefícios da previsão de vazão de longo prazo Anais do XVII Simpósio Brasileiro de Recursos Hídricos, ABRH, 2007.
10. Higgins, S.I., J. Kantelhardt, S. Scheiter and J. Boerner, Sustainable management of extensively managed savanna rangelands, Ecological Economics, 62 (1), pp. 102-114, 2007.
11. Boerner, J., S.I. Higgins, J. Kantelhardt and S. Scheiter, Rainfall or price variability: What determines rangeland management decisions? A simulation-optimization approach to South African savannas, Agricultural Economics, 37(2-3), 189-200, 2007.
12. Ilich, N., Shortcomings of linear programming in optimizing river basin allocation, Water Resources Research, 44, W02426, doi:10.1029/2007WR006192, 2008.
13. #Liu, P., S. Guo and W. Li, Optimal design of seasonal flood control water levels for the Three Gorges Reservoir, IAHS-AISH Publication 319, 270-277, 2008.
14. Bravo, J. M., W. Collischonn, J. V. Pilar, & C. E. M. Tucci, Otimização de regras de operação de reservatórios com incorporação da previsão de vazão, Revista Brasileira de Recursos Hídricos, 13(1), 181-196, 2008.
15. Jothiprakash, V., and G. Shanthi, Comparison of Policies Derived from Stochastic Dynamic Programming and Genetic Algorithm Models, Water Resources Management, 23(8), 1563-1580, 2009.
16. Celeste, A. B, and Billib, M., Evaluation of stochastic reservoir operation optimization models, Advances in Water Resources, 32 (9), 1429-1443, 2009.
17. Sankarasubramanian, A., U. Lall, F. A. Souza Filho, and A. Sharma, Improved water allocation utilizing probabilistic climate forecasts: Short-term water contracts in a risk management framework, Water Resour. Res., 45, W11409, doi:10.1029/2009WR007821, 2009.
18. Rani, D., and M. M. Moreira, Simulation–optimization modeling: A survey and potential application in reservoir systems operation, Water Resources Management, 24 (6), 1107-1138, 2010.
19. #Liu, P. and X. Cai, Deriving near-optimal solutions to deterministic reservoir operation problems, Challenges of Change, Proceedings of the World Environmental and Water Resources Congress 2010, R. N. Palmer ed., ASCE, 371 (41114),268-268, 2010.
20. Liu, X., S. Guo, P. Liu, L. Chen and X. Li, Deriving Optimal Refill Rules for Multi-Purpose Reservoir Operation, Water Resources Management, 25 (2), 431-448, 2011.
21. Liu, P., S. Guo, X. Xu and J. Chen, Derivation of aggregation-based joint operating rule curves for cascade hydropower reservoirs, Water Resources Management, 25 (13), 3177-3200, 2011.
22. Liu, P., X. Cai, and S. Guo, Deriving multiple near-optimal solutions to deterministic reservoir operation problems, Water Resour. Res., 47, W08506, doi: 10.1029/2011WR010998, 2011.
23. Ostadrahimi, L., M. A. Mariño and A. Afshar, Multi-reservoir operation rules: Multi-swarm PSO-based optimization approach, Water Resources Management, 26 (2), 407-427, 2012.
24. Celeste, A., and M. Billib, Improving implicit stochastic reservoir optimization models with long-term mean inflow forecast, Water Resources Management, 26 (9), 2443-2451, 2012.
25. #Schumann, A., Gumbel Distribution, ARMA, Copulas – The importance of stochastic tools for water management, 3rd STAHY International Workshop on Statistical Methods for Hydrology and Water Resources Management, Tunis, Tunisia, 2012.
26. Joshi, M. L. P., and K. R. Reddy, System approach to the optimal operation of Srisailam reservoir, International Journal of Civil Engineering Applications Research, 03 (03), 129-136, 2012.
27. Guo, X., T. Hu, X. Zeng and X. Li, Extension of parametric rule with the Hedging Rule for managing multi‐reservoir system during droughts, J. Water Resour. Plann. Manage., 139 (2), 139-148, 2013.
28. Guo, X., T. Hu, C. Wu, T. Zhang and Y. Lv, Multi-objective optimization of the proposed multi-reservoir operating policy using improved NSPSO, Water Resources Management, 2137-2153, 2013.
29. Portoghese, I., E. Bruno, P. Dumas, N. Guyennon, S. Hallegatte, J.-C. Hourcade, H. Nassopoulos, G. Pisacane, M. V. Struglia and M. Vurro, Impacts of climate change on freshwater bodies: Quantitative aspects, Regional Assessment of Climate Change in the Mediterranean, Advances in Global Change Research (eds. A. Navarra and L. Tubiana), 50, 241-306, 10.1007/978-94-007-5781-3_9, 2013.
30. Lerma, N., J. Paredes-Arquiola, J. Andreu, and A. Solera, Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization, Hydrological Sciences Journal, 58 (4), 797-812, 2013.
31. Zeng, X., T.-S. Hu, X.-N. Guo and X.-J. Li, Triggering mechanism for inter-basin water transfer-supply in multi-reservoir system, Shuili Xuebao/Journal of Hydraulic Engineering, 44 (3), 253-261, 2013.
32. Giuliani, M., and A. Castelletti, Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization, Water Resources Research, 10.1002/wrcr.20287, 2013.
33. Castelletti, A., F. Pianosi and M. Restelli, A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run, Water Resources Research, 10.1002/wrcr.20295, 2013.
34. Wang, D., J. Y. Deng, Y. T. Li and J. J. Fang, Study on the impounding process optimization of cascade reservoirs in Upper Changjiang River, Applied Mechanics and Materials, 353, 2520-2526, 2013.
35. Xu, W., Y. Peng and B. Wang, Evaluation of optimization operation models for cascaded hydropower reservoirs to utilize medium range forecasting inflow, Science China Technological Sciences, 10.1007/s11431-013-5346-7, 2013.
36. Liu, P., J. Zhao, L. Li and Y. Shen, Equivalence of reservoir optimal operation, Advances in Science and Technology of Water Resources, 33 (2), pp. 5-8+82, 2013.
37. Börner, J., S. I. Higgins, S. Scheiter and J. Kantelhardt, Approximating optimal numerical solutions to Bio-economic systems: How useful is Simulation-optimization?, Quarterly Journal of International Agriculture, 52 (3), 179-198, 2013.
38. Liu, P., W. Zhang and T Li, Derivations of risk-based reservoir operation rule curves, Shuili Fadian Xuebao/Journal of Hydroelectric Engineering, 32 (4), 252-259, 2013.
39. Zeng, Y., X. Wu, C. Cheng and Y. Wang, Chance constrained optimal hedging rules for cascaded hydropower reservoirs, J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000427, 2014.
40. Castelletti, A., H. Yajima, M. Giuliani, R. Soncini-Sessa and E. Weber, Planning the optimal operation of a multi-outlet water reservoir with water quality and quantity targets, J. Water Resour. Plann. Manage., 140 (4), 496-510, 2014.
41. Asadzadeh, M., S. Razavi, B. A. Tolson, and D. Fay, Pre-emption strategies for efficient multi-objective optimization: Application to the development of Lake Superior regulation plan, Environmental Modelling and Software, 54, 128-141, 2014.
42. Latorre, J., S. Cerisola, A. Ramos, A. Perea, and R. Bellido, Coordinated hydropower plant simulation for multireservoir systems, Journal of Water Resources Planning and Management, 140(2), 216–227, 2014.
43. Arena, C., M. Cannarozzo and M. R. Mazzola, Screening investments to reduce the risk of hydrologic failures in the headwork system supplying Apulia (Italy) – Role of economic evaluation and operation hydrology, Water Resources Management, 10.1007/s11269-014-0539-9, 2014.
44. Zeng, X., T. Hu, X. Guo and X. Li, Water transfer triggering mechanism for multi-reservoir operation in inter-basin water transfer-supply project, Water Resources Management, 10.1007/s11269-014-0541-2, 2014.
45. Li, L., P. Liu, D. E. Rheinheimer, C. Deng and Y. Zhou, Identifying explicit formulation of operating rules for multi-reservoir systems using genetic programming, Water Resources Management, 10.1007/s11269-014-0563-9, 2014.
46. Giuliani, M., S. Galelli, R. Soncini-Sessa, A dimensionality reduction approach for many-objective Markov Decision Processes: Application to a water reservoir operation problem, Environmental Modelling & Software, 10.1016/j.envsoft.2014.02.011, 2014.
47. Giuliani, M., J. D. Herman, A. Castelletti and P. Reed, Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management, Water Resources Research, 10.1002/2013WR014700, 2014.
48. Liu, P., L. Li, G. Chen and D. E. Rheinheimer, Parameter uncertainty analysis of reservoir operating rules based on implicit stochastic optimization, Journal of Hydrology, 10.1016/j.jhydrol.2014.04.012, 2014.
49. #Biglarbeigi, P., M. Giuliani and A. Castelletti, Many-objective direct policy search in the Dez and Karoun multireservoir system, Iran, ASCE World Water and Environmental Resources Congress, Portland, OR., USA, 2014.
50. #Giuliani, M., E. Mason, A. Castelletti, F. Pianosi and R. Soncini-Sessa, Universal approximators for direct policy search in multi-purpose water reservoir management: A comparative analysis, 19th World Congress, The International Federation of Automatic Control, Cape Town, South Africa, 2014.
51. Stagge, J. H., and G. E. Moglen, Evolutionary algorithm optimization of a multireservoir system with long lag times, Journal of Hydrologic Engineering, 19 (3), 10.1061/(ASCE)HE.1943-5584.0000972, 2014.
52. Wang, J., T. Hu, X. Zeng and H. Fang, Simulation and optimization model for hedging rule based on target storage, Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 42 (9), 107-111, 2014.
53. Wang, Y., S. Guo, G. Yang, X. Hong and T. Hu, Optimal early refill rules for Danjiangkou Reservoir, Water Science and Engineering, 7(4), 403-419, 2014.
54. #Sharma P.J., P.L. Patel and V. Jothiprakash, Performance evaluation of a multi-purpose reservoir using simulation models for different scenarios, ISH - Hydro 2014 International, 2014.
55. Pan, L., M. Housh, P. Liu, X. Cai and X. Chen, Robust stochastic optimization for reservoir operation, Water Resources Research, 51 (1), 409-429, 2015.
56. Ho, V.H., I. Kougias, and J.H. Kim, Reservoir operation using hybrid optimization algorithms, Global Nest Journal, 17 (1), 103-117, 2015.
57. Zeng, Y., X. Wu, C. Cheng and Y. Wang, Chance-constrained optimal hedging rules for cascaded hydropower reservoirs, () Journal of Water Resources Planning and Management, 140 (7), art. no. 04014010, 10.1061/(ASCE)WR.1943-5452.0000427, 2014.
58. Afshar, A., M.J. Emami Skardi and F. Masoumi, Optimizing water supply and hydropower reservoir operation rule curves: An imperialist competitive algorithm approach, Engineering Optimization, 47 (9), 1208-1225, 2014.
59. Liu, P., L. Li, S. Guo, L. Xiong, W. Zhang, J. Zhang and C.-Y. Xu, Optimal design of seasonal flood limited water levels and its application for the Three Gorges Reservoir, Journal of Hydrology, 527, 1045-1053, 2015.
60. Zhang, J., P. Liu, H. Wang, X. Lei and Y. Zhou, A Bayesian model averaging method for the derivation of reservoir operating rules, Journal of Hydrology, 528, 276-285, 2015.
61. Dariane A.B., and A.M. Moradi, A comparative analysis of evolving artificial neural network and reinforcement learning in stochastic optimization of multireservoir systems, Hydrological Sciences Journal, 10.1080/02626667.2014.986485, 2015.
62. Giuliani, M., A. Castelletti, F. Pianosi, E. Mason and P. Reed, curses, tradeoffs, and scalable management: advancing evolutionary multiobjective direct policy search to improve water reservoir operations, J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000570, 04015050, 2015.
63. Chu, J., C. Zhang, G. Fu, Y. Li and H. Zhou, Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction, Hydrology and Earth System Sciences, 19 (8), 3557-3570, 2015.
64. Ward, V.L., R. Singh, P.M. Reed and K. Keller, Confronting tipping points: Can multi-objective evolutionary algorithms discover pollution control tradeoffs given environmental thresholds?, Environmental Modelling and Software, 73, 27-43, 2015.
65. Salazar, J. Z., P. M. Reed, J. D. Herman, M. Giuliani, and A. Castelletti, A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control, Advances in Water Resources, 92, 172-185, doi:10.1016/j.advwatres.2016.04.006, 2016.
66. Müller, R., and N. Schütze, Multi-objective optimization of multi-purpose multi-reservoir systems under high reliability constraints, Environmental Earth Sciences, 75:1278, doi:10.1007/s12665-016-6076-5, 2016.
67. Lei, X., Q. Tan, X. Wang, H. Wang, X. Wen, C. Wang, and Z.-W. Zhang, Stochastic optimal operation of reservoirs based on copula functions, Journal of Hydrology, doi:10.1016/j.jhydrol.2017.12.038, 2017.
68. Stamou, A. T., and P. Rutschmann, Pareto optimization of water resources using the nexus approach, Water Resources Management, doi:10.1007/s11269-018-2127-x, 2018.
69. Bayesteh, M., and A. Azari, Stochastic optimization of reservoir operation by applying hedging rules, Journal of Water Resources Planning and Management, 147(2), doi:10.1061/(ASCE)WR.1943-5452.0001312, 2021.
70. Stamou, A.-T., and P. Rutschmann, Optimization of water use based on the water-energy-food nexus concept: Application to the long-term development scenario of the Upper Blue Nile River, Water Utility Journal, 25, 1-13, 2020.

Tagged under: Hydrosystems, Optimization, Students' works