Καταβιβασμός χρονικής κλίμακας της βροχής: Θεωρητική και εμπειρική σύγκριση των τυχαίων αλληλοδιαδοχών τύπου πολυμορφοκλασματικών και τύπου Hurst-Kolmogorov

F. Lombardo, E. Volpi, and D. Koutsoyiannis, Rainfall downscaling in time: Theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades, Hydrological Sciences Journal, 57 (6), 1052–1066, 2012.

[Καταβιβασμός χρονικής κλίμακας της βροχής: Θεωρητική και εμπειρική σύγκριση των τυχαίων αλληλοδιαδοχών τύπου πολυμορφοκλασματικών και τύπου Hurst-Kolmogorov]

[doc_id=1193]

[Αγγλικά]

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.1080/02626667.2012.695872

Σημείωση:

Επιλεγμένο (featured) άρθρο του Hydrological Sciences Journal.

Για αυτό το άρθρο, οι συγγραφείς Federico Lombardo και Elena Volpi, βραβεύτηκαν με το Tison Award 2013 της International Association of Hydrological Sciences (IAHS), το οποίο απονέμεται σε νέους επιστήμονες (ηλικίας κάτω των 41) για μια εξαιρετική δημοσίευση που έχει δημοσιευτεί τα τελευταία δύο χρόνια.

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, Coupling stochastic models of different time scales, Water Resources Research, 37 (2), 379–391, doi:10.1029/2000WR900200, 2001.
2. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.
3. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, Hydrological Sciences Journal, 50 (3), 381–404, doi:10.1623/hysj.50.3.381.65031, 2005.
4. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 2, Time dependence of hydrological processes and time scaling, Hydrological Sciences Journal, 50 (3), 405–426, doi:10.1623/hysj.50.3.405.65028, 2005.
5. A. Langousis, and D. Koutsoyiannis, A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour, Journal of Hydrology, 322, 138–154, 2006.
6. D. Koutsoyiannis, S.M. Papalexiou, and A. Montanari, Can a simple stochastic model generate a plethora of rainfall patterns? (invited), The Ultimate Rainmap: Rainmap Achievements and the Future in Broad-Scale Rain Modelling, Oxford, doi:10.13140/RG.2.2.36371.68642, Engineering and Physical Sciences Research Council, 2007.
7. D. Koutsoyiannis, and A. Langousis, Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78, Academic Press, Oxford, 2011.
8. D. Koutsoyiannis, Hurst-Kolmogorov dynamics as a result of extremal entropy production, Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi:10.1016/j.physa.2010.12.035, 2011.
9. S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011.
10. S.M. Papalexiou, and D. Koutsoyiannis, Entropy based derivation of probability distributions: A case study to daily rainfall, Advances in Water Resources, 45, 51–57, doi:10.1016/j.advwatres.2011.11.007, 2012.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. F. Lombardo, E. Volpi, D. Koutsoyiannis, and S.M. Papalexiou, Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology, Hydrology and Earth System Sciences, 18, 243–255, doi:10.5194/hess-18-243-2014, 2014.
2. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
3. F. Lombardo, E. Volpi, D. Koutsoyiannis, and F. Serinaldi, A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall, Water Resources Research, 53 (6), 4586–4605, doi:10.1002/2017WR020529, 2017.
4. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
5. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.
6. I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure, Journal of Hydrology, 575, 354–380, doi:10.1016/j.jhydrol.2019.05.017, 2019.
7. D. Koutsoyiannis, Knowable moments for high-order stochastic characterization and modelling of hydrological processes, Hydrological Sciences Journal, 64 (1), 19–33, doi:10.1080/02626667.2018.1556794, 2019.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Resta, M., Hurst exponent and its applications in time-series analysis, Recent Patents on Computer Science, 5 (3), 211-219, 2012.
2. Lisniak, D., J. Franke and C. Bernhofer, Circulation pattern based parameterization of a multiplicative random cascade for disaggregation of observed and projected daily rainfall time series, Hydrol. Earth Syst. Sci., 17, 2487-2500, 10.5194/hess-17-2487-2013, 2013.
3. Paschalis, A., P. Molnar, S. Fatichi and P. Burlando, On temporal stochastic modeling of precipitation, nesting models across scales, Advances in Water Resources, 63, 152-166, 2014.
4. Cheng, Q., Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions, Nonlin. Processes Geophys., 21, 477-487, 10.5194/npg-21-477-2014, 2014.
5. De Luca, D., Analysis and modelling of rainfall fields at different resolutions in southern Italy, Hydrological Sciences Journal, 10.1080/02626667.2014.926013, 2014.
6. Pavlopoulos, H., and W. Krajewski, A diagnostic study of spectral multiscaling on spatio-temporal accumulations of rainfall fields based on radar measurements over Iowa, Advances in Water Resources, 74, 258-278, 10.1016/j.advwatres.2014.10.001, 2014.
7. Licznar, P., C. De Michele and W. Adamowski, Precipitation variability within an urban monitoring network via microcanonical cascade generators, Hydrol. Earth Syst. Sci., 19 (1), 485-506, 2015.
8. Müller, H. and U. Haberlandt, Temporal Rainfall Disaggregation with a Cascade Model: From Single-Station Disaggregation to Spatial Rainfall, J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0001195, 04015026, 2015.
9. Kianfar, B., S. Fatichi, A. Paschalis, M. Maurer, and P. Molnar, Climate change and uncertainty in high-resolution rainfall extremes, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-536, 2016.

Κατηγορίες: Δυναμική Hurst-Kolmogorov, Στοχαστικός επιμερισμός, Μοντέλα βροχής