Bluecat: A local uncertainty estimator for deterministic simulations and predictions

D. Koutsoyiannis, and A. Montanari, Bluecat: A local uncertainty estimator for deterministic simulations and predictions, Water Resources Research, 58 (1), e2021WR031215, doi:10.1029/2021WR031215, 2022.

[doc_id=2166]

[Αγγλικά]

PDF Πλήρες κείμενο (1850 KB)

PDF Συμπληρωματικό υλικό:

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. A. Montanari, and D. Koutsoyiannis, A blueprint for process-based modeling of uncertain hydrological systems, Water Resources Research, 48, W09555, doi:10.1029/2011WR011412, 2012.
2. A. Montanari, and D. Koutsoyiannis, Reply to comment by G. Nearing on ‘‘A blueprint for process-based modeling of uncertain hydrological systems’’, Water Resources Research, 50 (7), 6264–6268, doi:10.1002/2013WR014987, 2014.
3. A. Montanari, and D. Koutsoyiannis, Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resources Research, 50 (12), 9748–9756, doi:10.1002/2014WR016092, 2014.
4. A. Sikorska, A. Montanari, and D. Koutsoyiannis, Estimating the uncertainty of hydrological predictions through data-driven resampling techniques, Journal of Hydrologic Engineering (ASCE), 20 (1), doi:10.1061/(ASCE)HE.1943-5584.0000926, 2015.
5. D. Koutsoyiannis, and A. Montanari, Negligent killing of scientific concepts: the stationarity case, Hydrological Sciences Journal, 60 (7-8), 1174–1183, doi:10.1080/02626667.2014.959959, 2015.
6. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes, Stochastic Environmental Research & Risk Assessment, doi:10.1007/s00477-018-1638-6, 2019.
7. D. Koutsoyiannis, Knowable moments for high-order stochastic characterization and modelling of hydrological processes, Hydrological Sciences Journal, 64 (1), 19–33, doi:10.1080/02626667.2018.1556794, 2019.
8. G. Papacharalampous, H. Tyralis, A. Langousis, A. W. Jayawardena, B. Sivakumar, N. Mamassis, A. Montanari, and D. Koutsoyiannis, Large-scale comparison of machine learning regression algorithms for probabilistic hydrological modelling via post-processing of point predictions, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-3576, European Geosciences Union, 2019.
9. G. Papacharalampous, H. Tyralis, A. Langousis, A. W. Jayawardena, B. Sivakumar, N. Mamassis, A. Montanari, and D. Koutsoyiannis, Probabilistic hydrological post-processing at scale: Why and how to apply machine-learning quantile regression algorithms, Water, doi:10.3390/w11102126, 2019.
10. G. Papacharalampous, H. Tyralis, D. Koutsoyiannis, and A. Montanari, Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale, Advances in Water Resources, 136, 103470, doi:10.1016/j.advwatres.2019.103470, 2020.
11. D. Koutsoyiannis, and A. Montanari, A brisk local uncertainty estimator for hydrologic simulations and predictions (Blue Cat), European Geosciences Union General Assembly 2020, Geophysical Research Abstracts, Vol. 22, Vienna, doi:10.5194/egusphere-egu2020-10125, 2020.
12. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, ISBN: 978-618-85370-0-2, 333 pages, Kallipos Open Academic Editions, Athens, 2021.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. D. Koutsoyiannis, An open letter to the Editor of Frontiers, doi:10.13140/RG.2.2.34248.39689, Δεκέμβριος 2021.
2. D. Koutsoyiannis, and A. Montanari, Climate extrapolations in hydrology: The expanded Bluecat methodology, Hydrology, 9, 86, doi:10.3390/hydrology9050086, 2022.
3. D. Koutsoyiannis, C. Onof, A. Christofides, and Z. W. Kundzewicz, Revisiting causality using stochastics: 2. Applications, Proceedings of The Royal Society A, 478 (2261), 20210836, doi:10.1098/rspa.2021.0836, 2022.

Κατηγορίες: Ντετερμινισμός και στοχαστικότητα, Υδρολογικά μοντέλα, Αβεβαιότητα