Μοντέλο ομοιοθεσίας υετογραφήματος καταιγίδας

D. Koutsoyiannis, and E. Foufoula-Georgiou, A scaling model of storm hyetograph, Water Resources Research, 29 (7), 2345–2361, doi:10.1029/93WR00395, 1993.

[Μοντέλο ομοιοθεσίας υετογραφήματος καταιγίδας]

[doc_id=46]

[Αγγλικά]

Η εμπειρική ανάλυση υποδεικνύει ότι οι στατιστικές ιδιότητες των καταιγίδων σε μια θέση μέσα σε μια ομογενή εποχή εξαρτώνται από τη διάρκεια βροχής με ένα σαφή τρόπο. Για την εξήγηση αυτής της εξάρτησης υποτέθηκε ένα μοντέλο απλής ομοιοθεσίας (simple scaling model) για την ένταση βροχής κατά τη διάρκεια μιας καταιγίδας. Το μοντέλο στηρίζεται στη θεωρία των αυτο-όμοιων στοχαστικών ανελίξεων. Αποδεικνύεται τόσο με θεωρητικές όσο και με εμπειρικές μεθόδους ότι μπορεί να εξηγήσει σε ικανοποιητικό βαθμό την παρατηρημένη στατιστική δομή κατά τη διάρκεια των καταιγίδων παρέχοντας έτσι μια αποτελεσματική παραμετροποίηση των καταιγίδων που αντιστοιχούν σε μεταβαλλόμενες ολικές διάρκειες και ολικά ύψη. Αυτό το μοντέλο απλής ομοιοθεσίας είναι συμβιβαστό με την έννοια των αδιαστατοποιημένων αθροιστικών καμπυλών (ήτοι των καμπυλών κανονικοποιημένου αθροιστικού ύψους βροχής συναρτήσει του κανονικοποιημένου χρόνου από την έναρξη της καταιγίδας) οι οποίες χρησιμοποιούνται ευρέως σε μελέτες υδρολογικού σχεδιασμού. Επιπλέον, το μοντέλο προσφέρει μια καλή θεωρητική βάση για την μαθηματική (στοχαστική) περιγραφή και την παραμετροποίηση αυτών των καμπυλών, που ως τώρα ορίζονταν μόνο εμπειρικά. Στην εργασία αποδεικνύεται ότι τα δημοφιλή στάσιμα μοντέλα περιγραφής της έντασης βροχής, σε αντίθεση με το προτεινόμενο μοντέλο, δεν μπορούν να εξηγήσουν την εξάρτηση των στατιστικών χαρακτηριστικών της καταιγίδας από τη διάρκειά της, ούτε είναι συμβιβαστά με την έννοια των αδιαστατοποιημένων αθροιστικών καμπυλών.

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.1029/93WR00395

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. D. Koutsoyiannis, A stochastic disaggregation method for design storm and flood synthesis, Journal of Hydrology, 156, 193–225, doi:10.1016/0022-1694(94)90078-7, 1994.
2. D. Koutsoyiannis, and D. Pachakis, Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series, Journal of Geophysical Research-Atmospheres, 101 (D21), 26441–26451, doi:10.1029/96JD01389, 1996.
3. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000.
4. D. Koutsoyiannis, and N. Mamassis, On the representation of hyetograph characteristics by stochastic rainfall models, Journal of Hydrology, 251, 65–87, 2001.
5. D. Koutsoyiannis, C. Onof, and H. S. Wheater, Multivariate rainfall disaggregation at a fine timescale, Water Resources Research, 39 (7), 1173, doi:10.1029/2002WR001600, 2003.
6. E. Dodangeh, K. Shahedi, K. Solaimani, and P. Kossieris, Usability of the BLRP model for hydrological applications in arid and semi-arid regions with limited precipitation data, Modeling Earth Systems and Environment, 2017.
7. P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, 556, 980–992, doi:10.1016/j.jhydrol.2016.07.015, 2018.
8. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. #de Michele, C. and R. Rosso, Self-similarity as a physical basis for regionalization of flood probabilities, U.S.- Italy Research Workshop on the Hydrometeorology, Impacts, and Management of Extreme Floods, Perugia, Italy, 1995.
2. Foufoula-Georgiou, E., and W. Krajewski, Recent advances in rainfall modeling, estimation, and forecasting, Reviews of Geophysics, 33(Pt2 SS), 1125-1137, 1995.
3. Blöschl, G. and M. Sivapalan, Scale issues in hydrological modelling: A review, Hydrological Processes, 9, 251-290, 1995.
4. Burlando, P., and R. Rosso, Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation, Journal of Hydrology, 187(1-2), 45-64, 1996.
5. Krzysztofowicz, R., and T. A. Pomroy, Disaggregative invariance of daily precipitation, Journal of Applied Meteorology, 36(6), 721-734, 1997.
6. Robinson, J.S., and M. Sivapalan, Temporal scales and hydrological regimes: Implications for flood frequency scaling, Water Resources Research, 33(12), 2981-2999, 1997.
7. Verhoest, N., P.A. Troch, and F.P. deTroch, On the applicability of Bartlett-Lewis rectangular pulses models in the modeling of design storms at a point, Journal of Hydrology, 202(1-4), 108-120, 1997.
8. Arnaud, P., and J. Lavabre, Using a stochastic model for generating hourly hyetographs to study extreme rainfalls, Hydrological Sciences Journal, 44(3), 433-446, 1999.
9. Veneziano, D., and P. Villani, Best linear unbiased design hyetograph, Water Resources Research, 35(9), 2725-2738, 1999.
10. Menabde, M., and M. Sivapalan, Modeling of rainfal time series using bounded random cascades and Levy-stable distributions, Water Resources Research, 36(11), 3293-3300, 2000.
11. Heneker, T.H., M.F. Lambert and G. Kuczera, A point rainfall model for risk-based design, Journal of Hydrology, 247, 54-71, 2001.
12. Cheng, K.S., I. Hueter, E.C. Hsu, and H.C. Yeh, A scale-invariant Gauss-Markov model for design storm hyetographs, Journal of the American Water Resources Association, 37(3), 723-736, 2001.
13. de Michele, C., N.T. Kottegoda, and R. Rosso, IDAF (intensity-duration-area frequency) curves of extreme storm rainfall: a scaling approach, Water Science and Technology, 45 (2), 83-90, 2002.
14. Olsson, J., and P. Burlando, Reproduction of temporal scaling by a rectangular pulses rainfall model, Hydrological Processes, 16(3), 611-630, 2002.
15. Frost, A., G. Kuczera, S. Jennings, M. Lambert and M. Thyer, Incorporating Long-term Climate Variability into a Short-timescale Rainfall Model Using a Hidden State Markov Model, Australian Journal of Water Resources, 6(1), 63-70, 2002.
16. #Demissie, S. S., and C. Cunnane, Representation of climate change in flood frequency estimation, in: Celtic Water in European Framework – Pointing the Way to Quality”, Proc. 3rd Inter-Celtic Colloquium on Hydrology and Management of Water Resources (C. Cunnane and J. Barrins, Eds.), 336 pages, National University of Ireland, Galway, Ireland, 2002.
17. de Michele, C., and G. Salvadori, A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-Copulas, J. Geophys. Res.-Atmos., 108 (D2), art. no. 4067, 2003.
18. Asquith, W.H., J.R. Bumgarner, and L.S. Fahlquist, A triangular. model of dimensionless runoff producing rainfall hyetographs in Texas, Journal of the American Water Resources Association, 39(4), 911-921, 2003.
19. #Strauss, P., F. Konecny and S. Zach, RAINGEN 1.0, A system for generating internal rainfall structure of rainfall events, Institute for Land and Water Management, Austria & Institute for Soil Science, Austria, 2003.
20. #Steinhorst, H., C. Simmer and H.D. Schilling, A Statistical-Dynamic Analysis of Precipitation Data with High Temporal Resolution, Dynamics of Multiscale Earth Systems, H.J. Neugebauer and C. Simmer, Springer, 337-350, 2003.
21. #Frost, A.J., R. Srikanthan and P.S.P. Cowpertwait, Stochastic Generation of Point Rainfall Data at Subdaily Timescales: A Comparison of DRIP and NSRP, ISBN 1 920813 14 4, CRC for Catchment Hydrology, 2004.
22. Yu, P.S., T.C. Yang and C.S. Lin, Regional rainfall intensity formulas based on scaling property of rainfall, Journal of Hydrology, 295 (1-4), 108-123, 2004.
23. #Nascimento, N.D.O., D.A.F. Balbi and M. Naghettini, Modeling the time distributions of heavy storms - Design hyetographs, Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000: Building Partnerships, 104, 2004.
24. D'Odorico, P., S. Fagherazzi and R. Rigon, Potential for landsliding: Dependence on hyetograph characteristics, Journal of Geophysical Research-Earth Surface, 110 (F1): art. no. F01007, 2005.
25. Lin, G.F., L.H. Chen and S.C. Kao, Development of regional design hyetographs, Hydrological Processes, 19(4), 937-946, 2005.
26. Tsubo, M., S. Walker and M. Hensley, Quantifying risk for water harvesting under semi-arid conditions - Part I. Rainfall intensity generation, Agricultural Water Management, 76(2), 77-93, 2005.
27. #Grimaldi, S., F. Serinaldi, F. Napolitano and L. Ubertini, A 3-copula function application for design hyetograph analysis, IAHS-AISH Publication 293, 203-211, 2005.
28. #Blöschl, G., Statistical upscaling and downscaling in hydrology, Encyclopedia of Hydrological Sciences, Ch. 9, Part 1. Theory, Organization and Scale, M. G. Anderson (ed.) 2061–2080, John Wiley and Sons, Chichester, 2005.
29. #Frost, A. J., R. Srikanthan and P. S. P. Cowpertwait, Stochastic generation of point rainfall data at sub-daily timescales: A comparison of DRIP and NSRP, Proceedings, MODSIM05 - International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, 1813-1819, 2005.
30. Grimaldi, S., and F. Serinaldi, Design hyetograph analysis with 3-copula function, Hydrological Sciences Journal, 51 (2), 223-238, 2006.
31. Salvadori, G., and C. de Michele, Statistical characterization of temporal structure of storms, Advances in Water Resources, 29(6), 827-842, 2006.
32. Langousis, A., and D. Veneziano, Intensity-duration-frequency curves from scaling representations of rainfall, Water Resources Research, 43(2), W02422, 2007.
33. Debele, B., R. Srinivasan and J. Yves Parlange, Accuracy evaluation of weather data generation and disaggregation methods at finer timescales, Advances in Water Resources, 30(5), 1286-1300, 2007.
34. Arnaud, P., J.A. Fine and J. Lavabre, An hourly rainfall generation model applicable to all types of climate, Atmospheric Research, 85(2), 230-242, 2007.
35. De Michele, C., and G. Salvadori, On the use of copulas in hydrology: Theory and practice, Journal of Hydrologic Engineering, 12(4), 369-380, 2007.
36. Nhat, L.M., Y. Tachikawa, T. Sayama and K. Takara, Regional rainfall intensity-duration-frequency relationships for ungauged catchments based on scaling properties, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 50B, 33-43, 2007.
37. Lee, K.T., and J.-Y. Ho, Design hyetograph for typhoon rainstorms in Taiwan, Journal of Hydrologic Engineering, 13(7), 647-651, 2008.
38. Zhang, J., R.R. Murch, M.A. Ross, A.R. Ganguly and M. Nachabe, Evaluation of statistical rainfall disaggregation methods using rain-gauge information for West-Central Florida, Journal of Hydrologic Engineering, 13 (12), 1158-1169, 2008.
39. #Konecny, F., and P. Strauss, Hyetograph simulation of high-intense rainfall events, AGU Hydrology Days 2008, Colorado State University, Fort Collins, Colorado, USA, 43-51, 2008.
40. Bara, M., S. Kohnova, L. Gaal, J. Szolgay and K. Hlavcova, Estimation of IDF curves of extreme rainfall by simple scaling in Slovakia, Contributions to Geophysics and Geodesy, 39 (3), 187–206, 2009.
41. #Xu, Y. P., Y. K. Tung, F. Cao and Y. Tong, Constrained scaling approach for design rainfall estimation, Advances in Water Resources and Hydraulic Engineering - Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, 35-39, 2009.
42. Sarkar, S., N. Goel, and B. Mathur, Development of isopluvial map using L-moment approach for Tehri-Garhwal Himalaya, Stochastic Environmental Research and Risk Assessment, 24 (3), 411-423, 2010.
43. Bara, M., L. Gaal, S. Kohnova, J. Szolgay and K. Hlavcova, On the use of the simple scaling of heavy rainfall in a regional estimation of idf curves in Slovakia, Journal of Hydrology and Hydromechanics, 58 (1), 49-63, 2010.
44. Vandenberghe, S., N. E. C. Verhoest, E. Buyse and B. De Baets, A stochastic design rainfall generator based on copulas and mass curves, Hydrol. Earth Syst. Sci., 14, 2429–2442, 2010.
45. Hsu, N.-S., C.-L. Kuo and W.-T. Lin, The application of analytic hierarchy process on storm hyetograph, Journal of the Chinese Institute of Civil and Hydraulic Engineering, 22 (2), 151-158, 2010.
46. Jennings, S. A., M. F. Lambert and G. Kuczera, Generating synthetic high resolution rainfall time series at sites with only daily rainfall using a master-target scaling approach, Journal of Hydrology, 393 (3-4), 163-173, 2010.
47. #Sharma, A., and R. Mehrotra, Rainfall Generation, in Rainfall: State of the Science (eds F. Y. Testik and M. Gebremichael), American Geophysical Union, Washington, DC, 10.1029/2010GM000973, 2010.
48. Yokoo, Y. and M. Sivapalan, Towards reconstruction of the flow duration curve: development of a conceptual framework with a physical basis, Hydrol. Earth Syst. Sci., 15, 2805-2819, doi: 10.5194/hess-15-2805-2011, 2011.
49. #Bara, M., S. Kohnová, L. Gaál, J. Szolgay and K. Hlavčová, Comparison of IDF curves of extreme rainfall downscaled from design values of 1-day rainfall assessed by different approaches, XXV Conference of the Danube Countries on Hydrological Forecasting and Hydrological Bases of Water Management, Budapest, Hungary, 2011.
50. Huang, C.-C., Gaussian-distribution-based hyetographs and their relationships with debris flow initiation, Journal of Hydrology, 411 (3-4), 251-265, 2011.
51. Kimoto, A., H. E. Canfield and D. Stewart, Comparison of synthetic design storms with observed storms in Southern Arizona, Journal of Hydrologic Engineering, 16 (11), 935-941, 2011.
52. Veneziano, D. and C. Lepore, The scaling of temporal rainfall, Water Resour. Res., 48, W08516, doi: 10.1029/2012WR012105, 2012.
53. Tung, C.-P., W.-Y. Lien and W.-T. Liao, Producing daily and embedded hourly rainfall data using a novel weather generator, Terr. Atmos. Ocean. Sci., 24 (3), 437-450, 2013.
54. Paschalis, A., P. Molnar, S. Fatichi and P. Burlando, A stochastic model for high resolution space‐time precipitation simulation, Water Resources Research, 49 (12), 8400-8417, 2013.
55. Rodríguez, R., X. Navarro, M. C. Casas, J. Ribalaygua, B. Russo, L. Pouget and A. Redaño, Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain), International Journal of Climatology, 34 (3), 643-654, 2014.
56. England Jr., J. F., P. Y. Julien and M. L. Velleux, Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds, Journal of Hydrology, 28 (4), 2281-2292, 2014.
57. Herath, S., and R. Sarukkalige, Spatial and temporal downscaling approach to develop IDF curves for melbourne airport region, Hydrology and Water Resources Symposium 2014, HWRS 2014, 239-246, 2014.
58. Tesfaye, M. and S.S. Demissie, Development and application of spatially parameterized depth duration frequency model for estimation of design rainfall for Oromia State, Ethiopia, Sci. Technol. Arts Res. J., 3 (4), 143-151, 2014.
59. Pérez-Zanón, N., M.C. Casas-Castillo, R. Rodríguez-Solà, J.C. Peña, A. Rius, J.G. Solé and A. Redaño, Analysis of extreme rainfall in the Ebre Observatory (Spain), Theoretical and Applied Climatology, 10.1007/s00704-015-1476-0, 2015.
60. Sherly, M., S. Karmakar, T. Chan and C. Rau, Design rainfall framework using multivariate parametric-nonparametric approach, J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0001256, 04015049, 2015.

Κατηγορίες: Μοντέλα βροχής, Ομοιοθεσία, Στοχαστική