Ντετερμινιστικό χάος και στοχαστική θεώρηση στην ανάλυση και τη μοντελοποίηση σειρών σημειακής βροχής

D. Koutsoyiannis, and D. Pachakis, Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series, Journal of Geophysical Research-Atmospheres, 101 (D21), 26441–26451, doi:10.1029/96JD01389, 1996.

[Ντετερμινιστικό χάος και στοχαστική θεώρηση στην ανάλυση και τη μοντελοποίηση σειρών σημειακής βροχής]

[doc_id=43]

[Αγγλικά]

Εξετάζονται οι δυνητικές διαφορές στη δομή αφενός ιστορικών δεδομένων βροχής και αφετέρου συνθετικών δεδομένων που έχουν παραχθεί από ένα στοχαστικό μοντέλο βροχής, χρησιμοποιώντας αναλυτικά εργαλεία που επινοήθηκαν για την περιγραφή και το χαρακτηρισμό της χαοτικής συμπεριφοράς. Για το σκοπό αυτό μελετάται ένα δείγμα σημειακής βροχόπτωσης 6 ετών με χρονική διακριτότητα ενός τετάρτου της ώρας. Σε αυτό το δείγμα προσαρμόζεται ένα στοχαστικό μοντέλο ικανό να διατηρήσει τις σημαντικές ιδιότητες της ανέλιξης της βροχής, όπως της διαλείπουσας συμπεριφοράς, της εποχιακότητας και της συμπεριφοράς κλίμακας (scaling). Το μοντέλο χρησιμοποιείται στη συνέχεια για τη γέννηση ενός συνθετικού δείγματος ίσου μεγέθους. Για τα δύο σύνολα δεδομένων υπολογίζεται η διάσταση συσχέτισης (correlation dimension) για διάφορες διαστάσεις εμφύτευσης (embedding dimensions) χρησιμοποιώντας τη μέθοδο εμφύτευσης με χρονικές καθυστερήσεις (time delay embedding). Ωστόσο, η εφαρμοσιμότητα της μεθόδου στην εκτίμηση διαστάσεων συσχέτισης αποδεικνύεται να είναι περιορισμένη, εξαιτίας της κυριαρχίας των περιόδων μηδενικής βροχόπτωσης στα δείγματα των βροχών σε λεπτή χρονική κλίμακα. Έτσι, εκτός της μεθόδου εμφύτευσης με χρονικές καθυστερήσεις, αναπτύσσεται επιπρόσθετα μια μέθοδος αναλόγου Καντοριανής σκόνης (Cantorian dust analogue), η οποία και χρησιμοποιείται για την εκτίμηση διαστάσεων. Τα αποτελέσματα και των δύο μεθόδων δείχνουν ότι δεν υπάρχει καμιά ουσιαστική διαφορά δομής ανάμεσα στο ιστορικό και το συνθετικό δείγμα. Επιπλέον, καμιά ένδειξη ντετερμινισμού χαμηλής διάστασης δεν ανιχνεύεται στο σύνολα δεδομένων που μελετήθηκαν.

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.1029/96JD01389

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, and G. Tsakalias, A disaggregation model for storm hyetographs, 3rd Meeting of AFORISM, Athens, doi:10.13140/RG.2.2.28343.52649, National Technical University of Athens, 1992.
2. D. Koutsoyiannis, and E. Foufoula-Georgiou, A scaling model of storm hyetograph, Water Resources Research, 29 (7), 2345–2361, doi:10.1029/93WR00395, 1993.
3. D. Koutsoyiannis, A stochastic disaggregation method for design storm and flood synthesis, Journal of Hydrology, 156, 193–225, doi:10.1016/0022-1694(94)90078-7, 1994.
4. N. Mamassis, D. Koutsoyiannis, and E. Foufoula-Georgiou, Stochastic rainfall forecasting by conditional simulation using a scaling storm model, 19th General Assembly of the European Geophysical Society, Annales Geophysicae, Vol. 12, Supplement II, Part II, Grenoble, 324, 408, doi:10.13140/RG.2.1.1241.3682, European Geophysical Society, 1994.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. D. Koutsoyiannis, and N. Mamassis, On the representation of hyetograph characteristics by stochastic rainfall models, Journal of Hydrology, 251, 65–87, 2001.
2. D. Koutsoyiannis, C. Onof, and H. S. Wheater, Multivariate rainfall disaggregation at a fine timescale, Water Resources Research, 39 (7), 1173, doi:10.1029/2002WR001600, 2003.
3. D. Koutsoyiannis, A toy model of climatic variability with scaling behaviour, Journal of Hydrology, 322, 25–48, doi:10.1016/j.jhydrol.2005.02.030, 2006.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Sivakumar, B., K.K. Phoon, S.Y. Liong, and C.Y. Liaw, A systematic approach to noise reduction in chaotic hydrological time series, Journal of Hydrology, 219(3-4), 103-135, 1999.
2. Sivakumar, B., Chaos theory in hydrology: important issues and interpretations, Journal of Hydrology, 227(1-4), 1-20, 2000.
3. Sivakumar, B., R. Berndtsson, J. Olsson, K. Jinno, A. Kawamura, Dynamics of monthly rainfall-runoff process at the Gota basin: A search for chaos, Hydrology and Earth System Sciences, 4(3) 407-417, 2000.
4. Heneker, T.H., M.F. Lambert and G. Kuczera, A point rainfall model for risk-based design, Journal of Hydrology, 247, 54-71, 2001.
5. Sivakumar, B., Rainfall dynamics at different temporal scales: A chaotic perspective, Hydrology and Earth System Sciences, 5(4), 645-651, 2001.
6. Sivakumar, B., R. Berndtsson, J. Olsson, K. Jinno, Reply to "Which chaos in the rainfall-runoff process?", Hydrological Sciences Journal, 47 (1), 149-158, 2002.
7. Jayawardena, A.W., W. K. Li and P. Xu, Neighbourhood selection for local modelling and prediction of hydrological time series, Journal of Hydrology, 258, 40-57, 2002.
8. Sivakumar, B., M. Persson, R. Berndtsson, and C. B. Uvo, Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?, Water Resources Research, 38(2), 10.1029/2001WR000333, U21-U28, 2002
9. Wojcik, P., and T.A. Buishand, Simulation of 6-hourly rainfall and temperature by two resampling schemes, Journal of Hydrology, 273 (1-4), 69-80, 2003.
10. Lima, I.B.T., R.R. Rosa, F.M. Ramos and E.M.L.M. Novo, Water level dynamics in the Amazon floodplain, Advances in Water Resources, 26 (7), 725-732, 2003.
11. #Frost, A. J., R. Srikanthan and P. S. P. Cowpertwait, Stochastic Generation of Point Rainfall Data at Subdaily Timescales: A Comparison of DRIP and NSRP, ISBN 1 920813 14 4, CRC for Catchment Hydrology, 2004.
12. #Velichov, S., Nonlinear Dynamics And Chaos With Applications to Hydrodynamics and Hydrological Modelling, Taylor Francis, 310 pp., 2004.
13. Sivakumar, B., Chaos theory in geophysics: past, present and future, Chaos, Solitons and Fractals, 19 (2), 441-462, 2004.
14. Khan, S., A. R. Ganguly and S Saigal, Detection and predictive modeling of chaos in finite hydrological time series, Nonlinear Processes in Geophysics, 12(1), 41-53, 2005.
15. Dodov, B., and E. Foufoula-Georgiou, Incorporating the spatio-temporal distribution of rainfall and basin geomorphology into nonlinear analyses of streamflow dynamics, Advances in Water Resources, 28(7), 711-728, 2005.
16. Sivakumar, B., Correlation dimension estimation of hydrological series and data size requirement: myth and reality, Hydrological Sciences Journal, 50 (4), 591-603, 2005.
17. Salas, J.D., H.S. Kim, R. Eykholt, P. Burlando and T.R. Green, Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes, Nonlinear Processes in Geophysics, 12(4), 557-567, 2005.
18. #Wang, W., P.H.A.J.M. van Gelder and J.K.Vrijling, Is the streamflow process chaotic, Proc. International Symposium on Stochastic Hydraulics, Nijmegen, the Netherlands, 2005.
19. #Frost, A. J., R. Srikanthan and P. S. P. Cowpertwait, Stochastic generation of point rainfall data at sub-daily timescales: A comparison of DRIP and NSRP, Proceedings, MODSIM05 - International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, 1813-1819, 2005.
20. Khalil, A.F., M. McKee, M. Kemblowski, T. Asefa and L. Bastidas, Multiobjective analysis of chaotic dynamic systems with sparse learning machines, Advances in Water Resources, 29(1), 72-88, 2006.
21. Sivakumar, B., W.W. Wallender, W.R. Horwath, J.P/ Mitchell, S.A. Prentice and B.A. Joyce, Nonlinear analysis of rainfall dynamics in California's Sacramento valley, Hydrological Processes, 20(8), 1723-1736, 2006.
22. Wang, W., J.L. Vrijling, P.H.A.J.M. Van Gelder and J. Ma, Testing for nonlinearity of streamflow processes at different timescales, Journal of Hydrology, 322(1-4), 247-268, 2006.
23. Gaume, E., B. Sivakumar, M. Kolasinski and K. Hazoume, Identification of chaos in rainfall temporal disaggregation: Application of the correlation dimension method to 5-minute point rainfall series ..., Journal of Hydrology, 328(1-2), 56-64, 2006.
24. Segond, M.-L., C. Onof and H.S. Wheater, Spatial-temporal disaggregation of daily rainfall from a generalized linear model, Journal of Hydrology, 331(3-4), 674-689, 2006.
25. #Wang, W., Stochasticity, Nonlinearity and Forecasting of Streamflow Processes, 210 pages, IOS Press, Amsterdam (ISBN 1586036211), 2006.
26. Puente, C.E., and B. Sivakumar, Modeling geophysical complexity: a case for geometric determinism, Hydrology and Earth System Sciences,11, 721-724, 2007.
27. #Sivakumar, B., and C. E. Puente, Nonlinear dynamics and chaos in hydrologic systems: Recent developments and future directions, in Oxley, L. and D. Kulasiri (eds) MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, December 2007, 1554-1560, ISBN: 978-0-9758400-4-7, 2007
28. #Wang, W., P.H.A.J.M. Van Gelder and J.K. Vrijling, The effects of dynamical noises on the identification of chaotic systems with application to streamflow processes, Proc. 4th International Conference on Natural Computation, IEEE, 691-697, 2008.
29. #Konecny, F., and P. Strauss, Hyetograph simulation of high-intense rainfall events, AGU Hydrology Days 2008, Colorado State University, Fort Collins, Colorado, USA, 43-51, 2008.
30. Sivakumar, B., Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward, Stochastic Environmental Research and Risk Assessment, 23 (7), 1027-1036, 2009.
31. Wu, C. L., K. W. Chau, and Y. S. Li, Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques, Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737, 2009.
32. #Sivakumar, B., Chaos theory for hydrologic modeling and forecasting: Progress and challenges, Handbook of Research on Hydroinformatics: Technologies, Theories and Applications, 199-227, 2010.
33. Hassan, S. A. and M. R. K. Ansari, Nonlinear analysis of seasonality and stochasticity of the Indus River, Hydrol. Sci. J., 55(2), 250–265, 2010.
34. Wu, C. L., and K. W. Chau, Data-driven models for monthly streamflow time series prediction, Engineering Applications of Artificial Intelligence, 23 (8), 1350-1367, 2010.
35. Millan, H., B. Ghanbarian-Alavijeh and I. Garcia-Fornaris, Nonlinear dynamics of mean daily temperature and dewpoint time series at Babolsar, Iran, 1961 - 2005, Atmospheric Research, 98 (1), 89-101, 2010.
36. Serinaldi, F., Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models, Nonlin. Processes Geophys., 17, 697-714, doi: 10.5194/npg-17-697-2010, 2010.
37. #Castro, A., Dinâmica não-linear em sistemas hidrológicos, Embrapa Informática Agropecuária, IS1677-9274, 108, Campinas 2010.
38. #Sivakumar, B., and R. Berndtsson, Nonlinear dynamics and chaos in hydrology, ch. 9 in Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting, 107-244, World Scientific, 2010.
39. Essefi, E., M. A. Tagorti, J.Touir and C. Yaich, Modeling of the chaotic behaviors at Sidi El Hani discharge playa, eastern Tunisia: contribution of the philosophy of causality to solve complex chaotic systems in geology and biology, Tunisian Journal of Medicinal Plants and Natural Products, 7, 116-128, 2012.
40. Jothiprakash, V. and T. A. Fathima, Chaotic analysis of daily rainfall series in Koyna reservoir catchment area, India, Stochastic Environmental Research and Risk Assessment, 27 (6), 1371-1381, 2013.
41. Greco, R., M. Giorgio, G. Capparelli and P. Versace, Early warning of rainfall-induced landslides based on empirical mobility function predictor, Engineering Geology, 153, 68-79, 2013.
42. Modarres, R., and T. B. M. J. Ouarda, Modeling rainfall-runoff relationship using multivariate GARCH model, Journal of Hydrology, 499, 1-18, 2013.
43. Hu, Z., C. Zhang, G. Luo, Z. Teng and C. Jia, Characterizing cross-scale chaotic behaviors of the runoff time series in an inland river of Central Asia, Quaternary International, 10.1016/j.quaint.2013.07.031, 2013.
44. Jothiprakash, V., and T. A. Fathima, Chaotic analysis of reservoir inflow series: a case study on Koyna reservoir inflow, Journal of The Institution of Engineers (India): Series A, 10.1007/s40030-013-0047-6, 2013.
45. Kędra, M., Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains), Journal of Hydrology, 509, 474-503, 2014.
46. Wang, W., S. Zou, Z. Luo, W. Zhang, D. Chen and J. Kong, Prediction of the reference evapotranspiration using a chaotic approach, The Scientific World Journal, 10.1155/2014/347625, 2014.
47. Yu, Z., S. Miller, F. Montalto, and U. Lall, Development of a non-parametric stationary synthetic rainfall generator for use in hourly water resource simulations, Water, 11, 1728, doi:10.3390/w11081728, 2019.

Κατηγορίες: Ντετερμινισμός και στοχαστικότητα, Μοντέλα βροχής, Εργασίες φοιτητών