Flood design recipes vs. reality: can predictions for ungauged basins be trusted?

A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.



Despite the great scientific and technological advances in flood hydrology, everyday engineering practices still follow simplistic approaches that are easy to formally implement in ungauged areas. In general, these "recipes" have been developed many decades ago, based on field data from typically few experimental catchments. However, many of them have been neither updated nor validated across all hydroclimatic and geomorphological conditions. This has an obvious impact on the quality and reliability of hydrological studies, and, consequently, on the safety and cost of the related flood protection works. Preliminary results, based on historical flood data from Cyprus and Greece, indicate that a substantial revision of many aspects of flood engineering procedures is required, including the regionalization formulas as well as the modelling concepts themselves. In order to provide a consistent design framework and to ensure realistic predictions of the flood risk (a key issue of the 2007/60/EU Directive) in ungauged basins, it is necessary to rethink the current engineering practices. In this vein, the collection of reliable hydrological data would be essential for re-evaluating the existing "recipes", taking into account local peculiarities, and for updating the modelling methodologies as needed.

PDF Full text (207 KB)

PDF Additional material:

See also: http://www.nat-hazards-earth-syst-sci.net/14/1417/2014/

Our works referenced by this work:

1. D. Koutsoyiannis, and Th. Xanthopoulos, Engineering Hydrology, Edition 3, 418 pages, doi:10.13140/RG.2.1.4856.0888, National Technical University of Athens, Athens, 1999.
2. D. Koutsoyiannis, and G. Baloutsos, Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall inferences, Natural Hazards, 22 (1), 29–48, doi:10.1023/A:1008001312219, 2000.
3. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation, Hydrological Sciences Journal, 49 (4), 575–590, 2004.
4. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, Hydrological Sciences Journal, 49 (4), 591–610, 2004.
5. D. Veneziano, and A. Langousis, The areal reduction factor: A multifractal analysis, Water Resources Research, 41, doi:10.1029/2004WR003765, 2005.
6. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
7. E. Galiouna, A. Efstratiadis, N. Mamassis, and K. Aristeidou, Investigation of extreme flows in Cyprus: empirical formulas and regionalization approaches for peak flow estimation, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 2077, European Geosciences Union, 2011.
8. S.M. Papalexiou, and D. Koutsoyiannis, Entropy based derivation of probability distributions: A case study to daily rainfall, Advances in Water Resources, 45, 51–57, doi:10.1016/j.advwatres.2011.11.007, 2012.
9. H. Tyralis, D. Koutsoyiannis, and S. Kozanis, An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters, Computational Statistics, 28 (4), 1501–1527, doi:10.1007/s00180-012-0364-7, 2013.
10. A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013.
11. E. Michaelidi, T. Mastrotheodoros, A. Efstratiadis, A. Koukouvinos, and D. Koutsoyiannis, Flood modelling in river basins with highly variable runoff, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.30847.00167, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
12. D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.

Our works that reference this work:

1. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.
2. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016, (in review).
3. K. Papoulakos, G. Pollakis, Y. Moustakis, A. Markopoulos, T. Iliopoulou, P. Dimitriadis, D. Koutsoyiannis, and A. Efstratiadis, Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability, Energy Procedia, 125, 405–414, doi:10.1016/j.egypro.2017.08.078, 2017.
4. P. Dimitriadis, A. Tegos, A. Petsiou, V. Pagana, I. Apostolopoulos, E. Vassilopoulos, M. Gini, A. D. Koussis, N. Mamassis, D. Koutsoyiannis, and P. Papanicolaou, Flood Directive implementation in Greece: Experiences and future improvements, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.

Other works that reference this work (this list might be obsolete):

1. van Emmerik, T. H. M., G. Mulder, D. Eilander, M. Piet, and H. Savenije, Predicting the ungauged basin: Model validation and realism assessment, Frontiers in Earth Sciences, 3:62, doi:10.3389/feart.2015.00062, 2015.
2. Biondi, D., and L. Da Luca, Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures, Natural Hazards, 79(2), 1015-1038, doi:10.1007/s11069-015-1889-1, 2015.
3. Yannopoulos, S., E. Eleftheriadou, S. Mpouri, and I. Giannopoulou, Implementing the requirements of the European Flood Directive: the case of ungauged and poorly gauged watersheds, Environmental Processes, 2(1), 191-207, doi:10.1007/s40710-015-0094-2, 2015.
4. Wałęga, A., and A. Rutkowska, Usefulness of the modified NRCS-CN method for the assessment of direct runoff in a mountain catchment, Acta Geophysica, 63(5), 1423–1446, doi:10.1515/acgeo-2015-0043, 2015.
5. Walega, A., B. Michalec, A. Cupak, and M. Grzebinoga, Comparison of SCS-CN determination methodologies in a heterogeneous catchment, Journal of Mountain Science, 12(5), 1084-1094, doi:10.1007/s11629-015-3592-9, 2015.
6. Petroselli, A., and S. Grimaldi, Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of the EBA4SUB framework, Journal of Flood Risk Management, doi:10.1111/jfr3.12193, 2015.
7. Awadallah, A.G., H. Saad, A. Elmoustafa, and A. Hassan, Reliability assessment of water structures subject to data scarcity using the SCS-CN model, Hydrological Sciences Journal, 61(4), 696-710, doi:10.1080/02626667.2015.1027709, 2016.
8. Merheb, M., R. Moussa, C. Abdallah, F. Colin, C. Perrin, and N. Baghdadi, Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrological Sciences Journal, 61(14), 2520-2539, doi:10.1080/02626667.2016.1140174, 2016.
9. Kjeldsen, T., H. Kim, C. Jang, and H. Lee, Evidence and implications of nonlinear flood response in a small mountainous watershed, Journal of Hydrologic Engineering, 21(8), 04016024, doi:10.1061/(ASCE)HE.1943-5584.0001343, 2016.
10. Taghvaye Salimi, E., A. Nohegar, A. Malekian, M. Hoseini, and A. Holisaz, Estimating time of concentration in large watersheds, Paddy and Water Environment, 15(1), 123-132, doi:10.1007/s10333-016-0534-2, 2017.
11. Biondi, D., and D. L. De Luca, Rainfall-runoff model parameter conditioning on regional hydrological signatures: application to ungauged basins in southern Italy, Hydrology Research, 48(3) 714-725, doi:10.2166/nh.2016.097, 2017.
12. Attakora-Amaniampong, E., E. Owusu-Sekyere, and D. Aboagye, Urban floods and residential rental values nexus in Kumasi, Ghana, Ghana Journal of Development Studies, 13(2), 176-194, 2016.
13. #Destro, E., E. I. Nikolopoulos, J. D. Creutin, and M. Borga, Floods, Environmental Hazards Methodologies for Risk Assessment and Management, Dalezios, N. R. (editor), Chapter 4, IWA Publishing, 2017.
14. van Noordwijk, M., L. Tanika, L., and B. Lusiana, Flood risk reduction and flow buffering as ecosystem services – Part 1: Theory on flow persistence, flashiness and base flow, Hydrology and Earth System Sciences, 21, 2321-2340, doi:10.5194/hess-21-2321-2017, 2017.
15. Verma, S., R. K. Verma, S. K. Mishra, A. Singh, and G. K. Jayaraj, A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation, Hydrological Sciences Journal, 62(12), 1891-1930, doi:10.1080/02626667.2017.1334166, 2017.
16. De Luca, D. L., and D. Biondi, Bivariate return period for design hyetograph and relationship with T-year design flood peak, Water, 9, 673, doi:10.3390/w9090673, 2017.
17. #Danııl E., S. Michas, and G. Aerakis, Hydrologic issues in demarcation studies of watercourses in Greece, 15th International Conference on Environmental Science and Technology, CEST2017_00869, Rhodes, 2017.
18. Wałęga, A., A. Cupak, D. M. Amatya, and E. Drożdżal, Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in Upper Vistula basin, Poland and Lowland catchment in South Carolina, U.S.A., Acta Sci. Pol. Formatio Circumiectus, 16(1), 187–207, doi:10.15576/ASP.FC/2017.16.1.187, 2017.

Tagged under: Floods, Hydrological models