Reconciling hydrology with engineering

D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.



Hydrology has played an important role in the birth of science. Yet practical hydrological knowledge, related to human needs for water storage, transfer and management, existed before the development of natural philosophy and science. In contemporary times, hydrology has had strong links with engineering as its development has been related to the needs of the design and management of water infrastructures. In the 1980s these links were questioned and it was suggested that separating hydrology from engineering would be beneficial for both. It is argued that, thereafter, hydrology, instead of becoming an autonomous science, developed new dependencies, particularly on politically driven agendas. This change of direction in effect demoted the role of hydrology, for example in studying hypothetical or projected climate-related threats. Revisiting past experiences suggests that re-establishing the relationship of hydrology with engineering could be beneficial. The study of change and the implied uncertainty and risk could constitute a field of mutual integration of hydrology and engineering. Engineering experience may help hydrology to appreciate that change is essential for progress and evolution, rather than only having adverse impacts. While the uncertainty and risk cannot be eliminated they can be dealt with in a quantitative and rigorous manner.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

See also:

Related works:

Our works referenced by this work:

1. D. Koutsoyiannis, N. Mamassis, and A. Tegos, Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece, Water Science and Technology: Water Supply, 7 (1), 13–22, 2007.
2. L. W. Mays, D. Koutsoyiannis, and A. N. Angelakis, A brief history of urban water supply in antiquity, Water Science and Technology: Water Supply, 7 (1), 1–12, doi:10.2166/ws.2007.001, 2007.
3. D. Koutsoyiannis, N. Zarkadoulas, A. N. Angelakis, and G. Tchobanoglous, Urban water management in Ancient Greece: Legacies and lessons, Journal of Water Resources Planning and Management - ASCE, 134 (1), 45–54, doi:10.1061/(ASCE)0733-9496(2008)134:1(45), 2008.
4. C. Makropoulos, D. Koutsoyiannis, M. Stanic, S. Djordevic, D. Prodanovic, T. Dasic, S. Prohaska, C. Maksimovic, and H. S. Wheater, A multi-model approach to the simulation of large scale karst flows, Journal of Hydrology, 348 (3-4), 412–424, 2008.
5. D. Koutsoyiannis, A power-law approximation of the turbulent flow friction factor useful for the design and simulation of urban water networks, Urban Water Journal, 5 (2), 117–115, 2008.
6. D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671–684, 2008.
7. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
8. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
9. D. Koutsoyiannis, Z. W. Kundzewicz, F. Watkins, and C. Gardner, Something old, something new, something red, something blue, Hydrological Sciences Journal, 55 (1), 1–3, 2010.
10. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, doi:10.1080/02626667.2010.513518, 2010.
11. G. Di Baldassarre, A. Montanari, H. F. Lins, D. Koutsoyiannis, L. Brandimarte, and G. Blöschl, Flood fatalities in Africa: from diagnosis to mitigation, Geophysical Research Letters, 37, L22402, doi:10.1029/2010GL045467, 2010.
12. D. Koutsoyiannis, Design of Urban Sewer Networks, Edition 4, 180 pages, doi:10.13140/RG.2.1.2169.1125, National Technical University of Athens, Athens, 2011.
13. D. Koutsoyiannis, and A. Langousis, Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78, Academic Press, Oxford, 2011.
14. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
15. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
16. D. Koutsoyiannis, Hurst-Kolmogorov dynamics as a result of extremal entropy production, Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi:10.1016/j.physa.2010.12.035, 2011.
17. D. Koutsoyiannis, Scale of water resources development and sustainability: Small is beautiful, large is great, Hydrological Sciences Journal, 56 (4), 553–575, doi:10.1080/02626667.2011.579076, 2011.
18. D. Koutsoyiannis, Prolegomena, Common Sense and Other Heresies, Selected Papers on Hydrology and Water Resources Engineering by Vít Klemeš (Second edition), edited by C. D. Sellars, xi–xv, Canadian Water Resources Association, International Association of Hydrological Sciences, 2011.
19. D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. G. Anagnostopoulos, and N. Mamassis, Scientific dialogue on climate: is it giving black eyes or opening closed eyes? Reply to “A black eye for the Hydrological Sciences Journal” by D. Huard, Hydrological Sciences Journal, 56 (7), 1334–1339, 2011.
20. A. Montanari, and D. Koutsoyiannis, A blueprint for process-based modeling of uncertain hydrological systems, Water Resources Research, 48, W09555, doi:10.1029/2011WR011412, 2012.
21. D. Koutsoyiannis, Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi:10.1080/02626667.2013.804626, 2013.
22. A. Montanari, G. Young, H. H. G. Savenije, D. Hughes, T. Wagener, L. L. Ren, D. Koutsoyiannis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta, M. Hipsey, B. Schaefli, B. Arheimer, E. Boegh, S. J. Schymanski, G. Di Baldassarre, B. Yu, P. Hubert, Y. Huang, A. Schumann, D. Post, V. Srinivasan, C. Harman, S. Thompson, M. Rogger, A. Viglione, H. McMillan, G. Characklis, Z. Pang, and V. Belyaev, “Panta Rhei – Everything Flows”, Change in Hydrology and Society – The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58 (6), 1256–1275, doi:10.1080/02626667.2013.809088, 2013.

Our works that reference this work:

1. A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.
2. D. Koutsoyiannis, Social vs. scientific perception of change in hydrology and climate — Reply to the Discussion by Arie Ben-Zvi on the Opinion Paper “Hydrology and Change”, Hydrological Sciences Journal, 59 (8), 1625–1626, doi:10.1080/02626667.2014.935382, 2014.
3. A. Montanari, and D. Koutsoyiannis, Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resources Research, 50 (12), 9748–9756, doi:10.1002/2014WR016092, 2014.
4. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.
5. P. Dimitriadis, D. Koutsoyiannis, and P. Papanicolaou, Stochastic similarities between the microscale of turbulence and hydrometeorological processes, Hydrological Sciences Journal, 61 (9), 1623–1640, doi:10.1080/02626667.2015.1085988, 2016.

Other works that reference this work (this list might be obsolete):

1. Littlewood, I. G., and C.-Y. Xu, Editorial: New category of invited papers, Hydrology Research, 45 (1), p. 1, 2014.
2. François, B., M. Borga,, S. Anquetin, J.D. Creutin, K. Engeland, A.C. Favre, B. Hingray, M.H. Ramos, D. Raynaud, B. Renard, E. Sauquet, J. F. Sauterleute, J. P. Vidal and G. Warland, Integrating hydropower and intermittent climate-related renewable energies: A call for hydrology, Hydrological Processes, 28 (21), 5465-5468, 2014.
3. Yao, Y., S. Zhao, Y. Zhang, K. Jia and M. Liu, Spatial and decadal variations in potential evapotranspiration of China based on reanalysis datasets during 1982–2010, Atmosphere, 5(4), 737-754, 2014.
4. Cudennec, C., and A. De Lavenne, Editorial: Hydrogeomorphology - A long-term scientific interface, Hydrology Research, 46 (2), 175-179, 2015.
5. Vogel, R.M., U. Lall, X. Cai, B. Rajagopalan, P.K. Weiskel, R.P. Hooper and N.C. Matalas, Hydrology: The interdisciplinary science of water, Water Resources Research, 51 (6), 4409-4430, 2015.

Tagged under: Course bibliography: Water Resources Management, Hydraulic models, Hydrological models, Hydrosystems, Most recent works, Uncertainty