A flood inundation modelling approach for urban and rural areas in lake and large-scale river basins

G. Papaioannou, L. Vasiliades, A. Loukas, A. Alamanos, A. Efstratiadis, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, A flood inundation modelling approach for urban and rural areas in lake and large-scale river basins, Water, 13 (9), 1264, doi:10.3390/w13091264, 2021.

[doc_id=2121]

[English]

Fluvial floods are one of the primary natural hazards to our society, and the associated flood risk should always be evaluated for present and future conditions. The European Union’s Floods Directive highlights the importance of flood mapping as a key-stage for detecting vulnerable areas, assessing floods’ impacts, and identifying damages and compensation plans. The implementation of the E.U. Flood Directive in Greece is challenging, because of its geophysical and climatic variability and diverse hydrologic and hydraulic conditions. This study addresses this challenge by modelling of design rainfall at sub-watershed level and subsequent estimation of flood design hydrographs using the NRCS Unit Hydrograph Procedure. HEC-RAS 2D model is used for flood routing, estimation of flood attributes (i.e., water depths and flow velocities) and mapping of inundated areas. The modelling approach has been applied at two complex and ungauged representative basins: Lake Pamvotida basin located in the Epirus Region of the wet western Greece and Pinios River basin located in Thessaly Region of the drier central Greece, a basin with a complex dendritic hydrographic system, expanding to more than 1188 river-km. The proposed modelling approach aims to better estimation and mapping of flood inundation areas including relative uncertainties and providing guidance to professionals and academics.

PDF Full text (45029 KB)

See also: https://www.mdpi.com/2073-4441/13/9/1264

Our works referenced by this work:

1. A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.
2. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.
3. E. Michailidi, S. Antoniadi, A. Koukouvinos, B. Bacchi, and A. Efstratiadis, Timing the time of concentration: shedding light on a paradox, Hydrological Sciences Journal, 63 (5), 721–740, doi:10.1080/02626667.2018.1450985, 2018.
4. G. Papaioannou, A. Efstratiadis, L. Vasiliades, A. Loukas, S.M. Papalexiou, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, An operational method for Floods Directive implementation in ungauged urban areas, Hydrology, 5 (2), 24, doi:10.3390/hydrology5020024, 2018.

Our works that reference this work:

1. A. Efstratiadis, P. Dimas, G. Pouliasis, I. Tsoukalas, P. Kossieris, V. Bellos, G.-K. Sakki, C. Makropoulos, and S. Michas, Revisiting flood hazard assessment practices under a hybrid stochastic simulation framework, Water, 14 (3), 457, doi:10.3390/w14030457, 2022.
2. P. Dimas, G.-K. Sakki, P. Kossieris, I. Tsoukalas, A. Efstratiadis, C. Makropoulos, N. Mamassis, and K. Pipili, Outlining a master plan framework for the design and assessment of flood mitigation infrastructures across large-scale watersheds, 12th World Congress on Water Resources and Environment (EWRA 2023) “Managing Water-Energy-Land-Food under Climatic, Environmental and Social Instability”, 75–76, European Water Resources Association, Thessaloniki, 2023.

Other works that reference this work (this list might be obsolete):

1. Varlas, G., A. Papadopoulos, G. Papaioannou, and E. Dimitriou, Evaluating the forecast skill of a hydrometeorological modelling system in Greece, Atmosphere, 12(7), 902, doi:10.3390/atmos12070902, 2021.
2. Karamvasis, K., and V. Karathanassi, FLOMPY: An open-source toolbox for floodwater mapping using Sentinel-1 intensity time series, Water, 13(21), 2943, doi:10.3390/w13212943, 2021.
3. Alamanos, A., P. Koundouri, L. Papadaki, and T. Pliakou, A system innovation approach for science-stakeholder interface: theory and application to water-land-food-energy nexus, Frontiers in Water, 3, 744773, doi:10.3389/frwa.2021.744773, 2022.
4. Papaioannou, G., V. Markogianni, A. Loukas, and E. Dimitriou, Remote sensing methodology for roughness estimation in ungauged streams for different hydraulic/hydrodynamic modeling approaches, Water, 14(7), 1076, doi:10.3390/w14071076, 2022.
5. Borowska-Stefańska, M., L. Balážovičová, K. Goniewicz, M. Kowalski, P. Kurzyk, M. Masný, S. Wiśniewski, M. Žoncová, and A. Khorram-Manesh, Emergency management of self-evacuation from flood hazard areas in Poland, Transportation Research Part D: Transport and Environment, 107, 103307, doi:10.1016/j.trd.2022.103307, 2022.
6. #Alamanos, A., and P. Koundouri, Emerging challenges and the future of water resources management, DEOS Working Papers, 2221, Athens University of Economics and Business, 2022.
7. Ciurte, D. L., A. Mihu-Pintilie, A. Urzică, and A. Grozavu, Integrating LIDAR data, 2d HEC-RAS modeling and remote sensing to develop flood hazard maps downstream of a large reservoir in the inner Eastern Carpathians, Carpathian Journal of Earth and Environmental Sciences, 18(1), 149-169, doi:10.26471/cjees/2023/018/248, 2023.
8. Vasiliades, L., G. Papaioannou, and A. Loukas, A unified hydrologic framework for flood design estimation in ungauged basins, Environmental Sciences Proceedings, 25(1), 40, doi:10.3390/ECWS-7-14194, 2023.
9. Iliadis, C., P. Galiatsatou, V. Glenis, P. Prinos, and C. Kilsby, Urban flood modelling under extreme rainfall conditions for building-level flood exposure analysis, Hydrology, 10(8), 172, doi:10.3390/hydrology10080172, 2023.
10. Iliadis, C., V. Glenis, and C. Kilsby, Cloud modelling of property-level flood exposure in megacities, Water, 15(19), 3395, doi:10.3390/w15193395, 2023.
11. Alamanos, A., G. Papaioannou, G. Varlas, V. Markogianni, A. Papadopoulos, and E. Dimitriou, Representation of a post-fire flash-flood event combining meteorological simulations, remote sensing, and hydraulic modeling, Land, 13(1), 47, doi:10.3390/land13010047, 2024.
12. Semiem A. G., G. T. Diro, T. Demissie, Y. M. Yigezu, and B. Hailu, Towards improved flash flood forecasting over Dire Dawa, Ethiopia using WRF-Hydro, Water, 15(18), 3262, doi:10.3390/w15183262, 2023.
13. #Alamanos, A., and P. Kountouri, Integrated and sustainable water resources management: Modeling, Elgar Encyclopedia of Water Policy, Economics and Management, edited by P. Kountouri and A. Alamanos, Chapter 32, 137-141, Edward Elgar Publishing, doi:10.4337/9781802202946.00039, 2024.
14. #Alamanos, A., and P. Kountouri, Future challenges of water resources management, Elgar Encyclopedia of Water Policy, Economics and Management, edited by P. Kountouri and A. Alamanos, Chapter 21, 87-93, Edward Elgar Publishing, doi:10.4337/9781802202946.00028, 2024.
15. Varlas, G., A. Papadopoulos, G. Papaioannou, V. Markogianni, A. Alamanos, and E. Dimitriou, Integrating ensemble weather predictions in a hydrologic-hydraulic modelling system for fine-resolution flood forecasting: The Case of Skala bridge at Evrotas River, Greece, Atmosphere, 15(1), 120, doi:10.3390/atmos15010120, 2024.

Tagged under: Floods, Hydraulic models, Hydrological models