E. Michailidi, S. Antoniadi, A. Koukouvinos, B. Bacchi, and A. Efstratiadis, Timing the time of concentration: shedding light on a paradox, Hydrological Sciences Journal, 63 (5), 721–740, doi:10.1080/02626667.2018.1450985, 2018.
[doc_id=1777]
[English]
From the origins of hydrology, the time of concentration, tc, has been conventionally tackled as constant quantity. However, theoretical proof and empirical evidence imply that tc exhibits significant variability against rainfall, making its definition and estimation a hydrological paradox. Adopting the assumptions of the Rational method and the kinematic approach, an effective procedure in a GIS environment for estimating the travel time across a catchment’s longest flow path is provided. By applying it in 30 Mediterranean basins, it is illustrated that tc is a negative power function of excess rainfall intensity. Regional formulas are established to infer its multiplier (unit time of concentration) and exponent from abstract geomorphological information, which are validated against observed data and theoretical literature outcomes. Besides offering a fast and easy solution to the paradox, we highlight the necessity for implementing the varying tc concept within hydrological modelling, signalling a major shift from current engineering practices.
Remarks:
2020 Tison Award, by International Association of Hydrological Sciences, awared to young hydrologists Eleni Maria Michailidi and Sylvia Antoniadi (https://iahs.info/About-IAHS/Competition--Events/Tison-Award/Tison-Award-winners/EMichailidi-SAntoniadi/)
Our works referenced by this work:
1. | A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014. |
2. | S. Antoniadi, Investigation of the river basin's response time variability, Postgraduate Thesis, 124 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2016. |
Our works that reference this work:
1. | G. Papaioannou, A. Efstratiadis, L. Vasiliades, A. Loukas, S.M. Papalexiou, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, An operational method for Floods Directive implementation in ungauged urban areas, Hydrology, 5 (2), 24, doi:10.3390/hydrology5020024, 2018. |
2. | G. Papaioannou, L. Vasiliades, A. Loukas, A. Alamanos, A. Efstratiadis, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, A flood inundation modelling approach for urban and rural areas in lake and large-scale river basins, Water, 13 (9), 1264, doi:10.3390/w13091264, 2021. |
3. | A. Efstratiadis, P. Dimas, G. Pouliasis, I. Tsoukalas, P. Kossieris, V. Bellos, G.-K. Sakki, C. Makropoulos, and S. Michas, Revisiting flood hazard assessment practices under a hybrid stochastic simulation framework, Water, 14 (3), 457, doi:10.3390/w14030457, 2022. |
Other works that reference this work (this list might be obsolete):
1. | Yazdia, M. N., D. J. Sample, D. Scott, J. Owen, M. Ketabchy, and N. Alamdari, Water quality characterization of storm and irrigation runoff from a container nursery, Science of the Total Environment, 667, 166-178, doi:10.1016/j.scitotenv.2019.02.326, 2019. |
2. | Jiang, X., L., Yang, and H. Tatano, Assessing spatial flood risk from multiple flood sources in a small river basin: A method based on multivariate design rainfall, Water, 11(5), 1031, doi:10.3390/w11051031, 2019. |
3. | Harisuseno, D., D. N. Khaeruddin, and R. Haribowo, Time of concentration based infiltration under different soil density, water content, and slope during a steady rainfall, Journal of Water and Land Development, 41 (IV–VI), 61-68, doi:10.2478/jwld-2019-0028, 2019. |
4. | Vojtek, M., A. Petroselli, J. Vojteková, and S. Asgharinia, Flood inundation mapping in small and ungauged basins: sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach, Hydrology Research, 50(4), 1002-1019, doi:10.2166/nh.2019.163, 2019. |
5. | Osuagwu, J., J. C. Agunwamba, and C. E. Nwabunor, Verification of time of concentration equation for improved drainage design, Environmental Management and Sustainable Development, 8(2), 151-161, doi:10.5296/emsd.v8i2.14902, 2019. |
6. | Sandoval, S., and J.-L. Bertrand-Krajewski, From marginal to conditional probability functions of parameters in a conceptual rainfall-runoff model: an event-based approach, Hydrological Sciences Journal, 64(11), 1340-1350, doi:10.1080/02626667.2019.1635696, 2019. |
7. | Masseroni, D., G. Ercolani, E. A. Chiaradia, and C. Gandolfi, A procedure for designing natural water retention measures in new development areas under hydraulic-hydrologic invariance constraints, Hydrology Research, 50(5), 1293-1308, doi:10.2166/nh.2019.018, 2019. |
8. | Santos, S. M., J. C. N. Pscheidt, G. Tiago, S. Klein, N. B. Bonumá, P. L. B. Chaffe, and K. Masato, Time of concentration in an experimental basin: Methods for analysis, backwater effects and vegetation removal, Journal of Urban & Environmental Engineering, 13(1), 163-173, 2019. |
9. | Beven, K. J., A history of the concept of time of concentration, Hydrology and Earth System Sciences, 24, 2655–2670, doi:10.5194/hess-24-2655-2020, 2020. |
10. | Veeck, S., F. F. da Costa, D. L. C. Lima, A. Rolim da Paz, and D. G. A. Piccilli, Scale dynamics of the HIDROPIXEL high-resolution DEM-based distributed hydrologic modeling approach, Environmental Modelling & Software, 127, 104695, doi:10.1016/j.envsoft.2020.104695, 2020. |
11. | Allnutt, C. E., O. J. Gericke, and J. P. J. Pietersen, Estimation of time parameter proportionality ratios in large catchments: Case study of the Modder‐Riet River Catchment, South Africa, Journal of Flood Risk Management, 13(3), e12628, doi:10.1111/jfr3.12628, 2020. |
12. | González-Álvarez, Á., J. Molina-Pérez, B. Meza-Zúñiga, O. M. Viloria-Marimón, K. Tesfagiorgis, and J. A. Mouthón-Bello, Assessing the performance of different time of concentration equations in urban ungauged watersheds: Case study of Cartagena de Indias, Colombia, Hydrology, 7(3), 47, doi:10.3390/hydrology7030047, 2020. |
13. | Dey, R., A. J. E. Gallant, and S. C. Lewis, Evidence of a continent-wide shift of episodic rainfall in Australia, Weather and Climate Extremes, 29, 100274, doi:10.1016/j.wace.2020.100274, 2020. |
14. | Kastridis, A., C. Kirkenidis, and M. Sapountzis, An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post‐flood surveys and Unmanned Aerial Vehicles (UAVs), Hydrological Processes, 34(25), 4920-4939, doi:10.1002/hyp.13913, 2020. |
15. | Ruman, S., R. Tichavský, K. Šilhán, K. and M. G. Grillakis, Palaeoflood discharge estimation using dendrogeomorphic methods, rainfall-runoff and hydraulic modelling—a case study from southern Crete, Natural Hazards, 105, 1721-1742, doi:10.1007/s11069-020-04373-2, 2021. |
16. | Giani, G., M. A. Rico‐Ramirez, and R. A. Woods, A practical, objective and robust technique to directly estimate catchment response time, Water Resources Research, 57(2), e2020WR028201, doi:10.1029/2020WR028201, 2021. |
17. | Bournas, A., and E. Baltas, Comparative analysis of rain gauge and radar precipitation estimates towards rainfall-runoff modelling in a peri-urban basin in Attica, Greece, Hydrology, 8(1), 29, doi:10.3390/hydrology8010029, 2021. |
18. | Jato-Espino, D., and S. Pathak, Geographic location system for identifying urban road sections sensitive to runoff accumulation, Hydrology, 8(2), 72, doi:10.3390/hydrology8020072, 2021. |
19. | Nash, D. M., A. J. Weatherley, P. J. A. Kleinman, and A. N. Sharpley, Estimating dissolved p losses from legacy sources in pastures - The limits of soil tests and small-scale rainfall simulators, Journal of Environmental Quality, 50(5), 1042-1062, doi:10.1002/jeq2.20265, 2021. |
20. | Almedeij. J., Modified NRCS abstraction method for flood hydrograph generation, Journal of Irrigation and Drainage Engineering, 47(10), doi:10.1061/(ASCE)IR.1943-4774.0001609, 2021. |
21. | Lapides, D. A., A. Sytsma, O. Crompton, and S. Thompson, Rational method time of concentration can underestimate peak discharge for hillslopes, Journal of Hydraulic Engineering, 147(10), doi:10.1061/(ASCE)HY.1943-7900.0001900, 2021. |
22. | Lapides, D. A., A. Sytsma, and S. Thompson, Implications of distinct methodological interpretations and runoff coefficient usage for rational method predictions, Journal of the American Water Resources Association, 57(6), 859-874, doi:10.1111/1752-1688.12949, 2021. |
23. | Fadhel, S., M. Al Aukidy, and M. S. Saleh, Uncertainty of intensity-duration-frequency curves due to adoption or otherwise of the temperature climate variable in rainfall disaggregation, Water, 13(17), 2337, doi:10.3390/w13172337, 2021. |
24. | Sapountzis, M., A. Kastridis, A. Kazamias, A. Karagiannidis, P. Nikopoulos, and K. Lagouvardos, Utilization and uncertainties of satellite precipitation data in flash flood hydrological analysis in ungauged watersheds, Global NEST Journal, 23, 1-12, 2021. |
25. | Kastridis, A., G. Theodosiou, and G. Fotiadis, Investigation of flood management and mitigation measures in ungauged NATURA protected watersheds, Hydrology, 8(4), 170, doi:10.3390/hydrology8040170, 2021. |
26. | Nagy, E. D., J. Szilagyi, and P. Torma, Assessment of dimension-reduction and grouping methods for catchment response time estimation in Hungary, Journal of Hydrology: Regional Studies, 38, 100971, doi:10.1016/j.ejrh.2021.100971, 2021. |
27. | Sanz-Ramos, M., E. Bladé, F. González-Escalona, G. Olivares, and J. L. Aragón-Hernández, Interpreting the Manning roughness coefficient in overland flow simulations with coupled hydrological-hydraulic distributed models, Water, 13(23), 3433, doi:10.3390/w13233433, 2021. |
28. | Rautela, K. S., M. Kumar, V. Khajuria, and M. A. Alam, Comparative geomorphometric approach to understand the hydrological behaviour and identification of the erosion prone areas of a coastal watershed using RS and GIS tools, Discover Water, 2, 1, doi:10.1007/s43832-021-00009-z, 2022. |
29. | Tardif, F., F. St-Pierre, G. Pelletier, and M. J. Rodriguez, Comparison of methods to evaluate overland travel times for source water protection, Journal of Environmental Planning and Management, 65(10), 1932-1948, doi:10.1080/09640568.2021.1952858, 2022. |
30. | Barbero, G., P. Costabile, C. Costanzo, D. Ferraro, and G. Petaccia, 2D Hydrodynamic approach supporting evaluations of hydrological response in small watersheds: implications for lag time estimation, Journal of Hydrology, 610, 127870, doi:10.1016/j.jhydrol.2022.127870, 2022. |
31. | Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022. |
32. | Giannaros, C., S. Dafis, S. Stefanidis, T. M. Giannaros, I. Koletsis, and C. Oikonomou, Hydrometeorological analysis of a flash flood event in an ungauged Mediterranean watershed under an operational forecasting and monitoring context, Meteorological Applications, 29(4), e2079, doi:10.1002/met.2079, 2022. |
33. | Nagy, E. D., J. Szilagyi, and P. Torma, Estimation of catchment response time using a new automated event-based approach, Journal of Hydrology, 613(A), 128355, doi:10.1016/j.jhydrol.2022.128355, 2022. |
34. | Mehta, O., M. Lal Kansal; and D. Singh Bisht, A comparative study of the time of concentration methods for designing urban drainage infrastructure, Journal of Water Supply: Research and Technology – Aqua, 71(10), 1197-1218, doi:10.2166/aqua.2022.107, 2022. |
35. | Zolghadr, M., M. R. Rafiee, F. Esmaeilmanesh, A. Fathi, R. P. Tripathi, U. Rathnayake, S. R. Gunakala, and H. M. Azamathulla, Computation of time of concentration based on two-dimensional hydraulic simulation, Water, 14(19), 3155, doi:10.3390/w14193155, 2022. |
36. | Alamri, N., K. Afolabi, H. Ewea, and A. Elfeki, Evaluation of the time of concentration models for enhanced peak flood estimation in arid regions, Sustainability, 15(3), 1987, doi:10.3390/su15031987, 2023. |
37. | Kotyra, B., and L. Chabudziński, Fast parallel algorithms for finding the longest flow paths in flow direction grids, Environmental Modelling & Software, 167, 105728, doi:10.1016/j.envsoft.2023.105728, 2023. |
38. | Zhang, J., S. Zhang, C. Wang, W. Wang, L. Ma, X. Xu, and J. Zhou, Influence of vegetation lodging on the flow regime and resistance characteristic of overland flow, Hydrological Processes, 37(3), e14848, doi:10.1002/hyp.14848, 2023. |
39. | #Martin, V. T., L. E. Bock, B. P. Bule, F. C. Pimentel, G. S. Araujo, L. C. Pinto, R. Tassi, and D. G. A. Piccilli, Estudo preliminar do tempo de concentração ajustado para aplicação do HUT-NRCS em bacias brasileiras, XXV SBRH - Simpósio Brasileiro de Recursos Hídricos, 2023. |
40. | Evangelista, J., R. Woods, and P. Claps, Dimensional analysis of literature formulas to estimate the characteristic flood response time in ungauged basins: a velocity-based approach, Journal of Hydrology, 130409, doi:10.1016/j.jhydrol.2023.130409, 2023. |
41. | Nagy, E. D., Sebesség alapú számítási módszer adaptálása hazai kisvízgyűjtőkön, Hidrológiai Közlöny, 103(4), 16-24, doi:10.59258/hk.13170, 2023. |
42. | Macdonald, E., B. Merz, B. Guse, V. D. Nguyen, X. Guan, and S. Vorogushyn, What controls the tail behaviour of flood series: Rainfall or runoff generation?, Hydrology and Earth System Sciences, 28, 833–850, doi:10.5194/hess-28-833-2024, 2024. |
43. | Nam, S., H. Lim, B. Choi, Q. Li, H. Moon, and H. T. Choi, Characteristics and estimation of the time of concentration for small forested catchments in steep mountainous terrain, Forests, 15(1), 186, doi:10.3390/f15010186, 2024. |
44. | Pramana, Y. H., and D. Harisuseno, Time of concentration estimated of overland flow, IOP Conference Series: Earth and Environmental Science, 1311, 012004, doi:10.1088/1755-1315/1311/1/012004, 2024. |
45. | Peramuna, P. D. P. O., N. G. P. B. Neluwala, K. K. Wijesundara, S. Venkatesan, S. De Silva, and P. B. R. Dissanayake, Novel approach to the derivation of dam breach parameters in 2D hydrodynamic modeling of earthquake induced dam failures, Science of The Total Environment, 927, 171505, doi:10.1016/j.scitotenv.2024.171505, 2024. |
46. | Costabile, P., G. Barbero, E. D. Nagy, K. Négyesi, G. Petaccia, and C. Costanzo, Predictive capabilities, robustness and limitations of two event-based approaches for lag time estimation in heterogeneous watersheds, Journal of Hydrology, 131814, doi:10.1016/j.jhydrol.2024.131814, 2024. |
47. | Bolduc, S., A. Mailhot, and G. Talbot, Estimation of the time of concentration of small watersheds located in northeastern North America, Hydrological Sciences Journal, doi:10.1080/02626667.2024.2387155, 2024. |
48. | Kaless, G., H. Malnero, O. Frumento, and M. Pascual, Rainfall and hydrograph styles in ephemeral streams of the drylands of Patagonia (South America–Argentina), Water Resources Research, 60(8), e2024WR037601, doi:10.1029/2024WR037601, 2024. |
49. | #Négyesi, K., E. D. Nagy, G. Barbero, G. Petaccia, C. Costanzo, and P. Costabile, Lag time predictions using characteristic times deduced by the 2D shallow water equations at basin-scale, River Flow 2022, A. M. F. da Silva, C. Rennie, S. Gaskin, J. Lacey, and B. MacVicar (editors), Chapter 8, CRC Press, 2024. |
Tagged under: Floods, Hydrological processes, Most recent works, Students' works